Publications by authors named "Xiaomin Miao"

High-dose perfluorooctanoic acid (PFOA) impairs oocyte maturation and offspring quality. However, the physiological concentrations of PFOA in follicular fluids of patients with premature ovarian insufficiency (POI) were detected at lower levels, thus the relationship between physiological PFOA and reproductive disorders remains elusive. Here, we investigated whether physiological PFOA exposure affects gonad function in adult zebrafish.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is a common diabetic vascular complication affecting nearly 40% of patients with diabetes. The lack of efficacious therapy for DKD necessitates the in-depth investigation of the molecular mechanisms underlying the pathogenesis and progression of DKD, which remain incompletely understood. Here, we discovered that the expression of USP25, a deubiquitinating enzyme, was significantly upregulated in the kidney of diabetic mice.

View Article and Find Full Text PDF

Cd36 is classified as a class B scavenger receptor and has also been identified as a pattern recognition receptor. In this study, we investigated the genomic structure and molecular characteristics of cd36 in mandarin fish (Siniperca chuatsi), examined its tissue distribution, and evaluated its antibacterial activity. Genomic structure analysis showed that Sccd36 consists of 12 exons and 11 introns.

View Article and Find Full Text PDF

During the mouth-opening stage, fish larvae are susceptible to delayed first feeding (DFF). In this study, we explored the effects of DFF for two days on later growth and energy metabolism in larval fish. Results showed that DFF chronically impaired larval growth performance, thereby reducing the efficiency of feed utilization by larvae.

View Article and Find Full Text PDF

Many strategies have been adopted to constructmyocardium models, which are of great value to both drug cardiotoxicity evaluation and cardiovascular drug development. In particular, the recent rapid development of human-induced pluripotent stem cell (hiPSC) technology and the rise of the organ-on-a-chip technique have provided great potential to achieve more physiologically relevantmodels. However, recapitulating the key role of the vasculature endothelial layer in drug action on myocardium in the models is still challenging.

View Article and Find Full Text PDF

Oxidative stress is one of most common environmental stresses encountered by fish, especially during their fragile larval stage. More and more studies are aimed at understanding the antioxidant defense mechanism of fish larvae. Herein we characterized the early resistance of zebrafish larvae to oxidative stress and investigated the underlying transcriptional regulations using RNA-seq.

View Article and Find Full Text PDF

The development of three-dimensional (3D) in vitro model to recapitulate the in vivo tumor tissue is essential for studying tumor biology, discovering anti-cancer drugs, and evaluating anti-cancer drug efficacy. However, most of the previous models lack the involvement of vascular barrier. Here, we proposed an in vitro 3D cocultured tumor-vascular barrier model by the combination of alginate hydrogels beads and Transwell system.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a sudden onset systemic inflammatory response. ALI causes severe morbidity and death and currently no effective pharmacological therapies exist. Natural products represent an excellent resource for discovering new drugs.

View Article and Find Full Text PDF

As an emerging 3D printing technique, melt electrospinning writing (MEW) has been used to fabricate scaffolds with controllable structure and good mechanical strength for bone regeneration. However, how to further improve MEW scaffolds with nanoscale extracellular matrix (ECM) mimic structure and bioactivity is still challenging. In this study, we proposed a simple composite process by combining MEW and solution electrospinning (SE) to fabricate a micro/nano hierarchical scaffold for bone tissue engineering.

View Article and Find Full Text PDF

Splenectomy or congenital asplenia in humans increases susceptibility to infections. We have previously reported that congenital asplenia in zebrafish reduces resistance to infection. However, the molecular mechanism of systemic immune response in congenitally asplenic individuals is largely unexplored.

View Article and Find Full Text PDF

Antioxidant system is crucial for protecting against environmental oxidative stress in fish life cycle. Although the effects of starvation on the antioxidant defenses in several adult fish have been defined, no relevant researches have been reported in the larval stage, particularly during the transition from endogenous to exogenous feeding. To clarify the molecular response of antioxidant system that occurs during the mouth-opening stage under starvation stress and explore its association with energy metabolism, we employed RNA-seq to analyze the gene expression profiles in zebrafish larvae that received a delayed first feeding for 3 days.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are bilayer membrane vesicles and act as key messengers in intercellular communication. EVs can be secreted by both neurons and glial cells in the central nervous system (CNS). Under physiological conditions, EVs contribute to CNS homeostasis by facilitating omnidirectional communication among CNS cell populations.

View Article and Find Full Text PDF

Preparing wound dressing with dual-delivery of antioxidant and antibacterial agents is highly desirable in clinical wound treatment. Herein, a series of coaxial nanofiber membranes loaded with antioxidant tea polyphenols (TP) in the core and antibacterial ε-poly (L-lysine) (ε-PL) in the shell layer were successfully fabricated by coaxial electrospinning. The physicochemical characterizations by transmission electron microscopy, inverted fluorescence microscopy and fourier transform infrared spectroscopy confirmed the formation of core-shell structure.

View Article and Find Full Text PDF

Hepatic steatosis caused by starvation, resulting in non-alcoholic fatty liver disease (NAFLD), has been a research topic of human clinical and animal experiments. To understand the molecular mechanisms underlying the triggering of abnormal liver metabolism by starvation, thus inducing hepatic lipid accumulation, we used zebrafish larvae to establish a starvation-induced hepatic steatosis model and conducted comparative transcriptome analysis by RNA-seq. We demonstrated that the incidence of larvae steatosis is positively correlated with starvation time.

View Article and Find Full Text PDF

Electrospun micro/nanofibrous membranes (EFMs) have been widely investigated as local drug delivery systems. Multiple drugs can be simultaneously incorporated into one EFM to create synergistic effects, reduce side effects, and play their respective roles in the complex physiological processes of tissue regeneration and postoperative adhesion prevention. Due to the versatile electrospinning techniques, sustained and programmed release behaviors of multiple drugs could be achieved by modulating the structure of the EFMs and the location of the drugs.

View Article and Find Full Text PDF

The development of food packaging possessing bioactivities which could extend the shelf life of food has gained increased interest in recent years. In this study, gelatin nanofibers with encapsulated angelica essential oil (AEO) were fabricated via electrospinning. The morphology of gelatin/AEO nanofibers was examined by scanning electron microscopy (SEM) and the addition of AEO resulted in the increase of fiber diameter.

View Article and Find Full Text PDF

Honey is an ancient natural wound-healing agent and has been reintroduced to modern clinical wound care as it has various bioactivities. In this study, honey was incorporated into an alginate/PVA-based electrospun nanofibrous membrane to develop an efficient wound dressing material. The morphology and chemical composition of the nanofibrous membrane were observed by scanning electron microscopy and characterized via Fourier transform infrared spectroscopy, respectively, demonstrating that honey was successfully introduced to the nanofibers.

View Article and Find Full Text PDF

Natural and edible materials have attracted increasing attention in food packaging, which could overcome the serious environmental issues caused by conventional non-biodegradable synthetic packaging. In this work, gelatin nanofibers incorporated with two kinds of essential oil (EO), peppermint essential oil (PO) and chamomile essential oil (CO), were fabricated by electrospinning for potential edible packaging application. Electron microscopy showed that smooth and uniform morphology of the gelatin/EOs was obtained, and the diameter of nanofibers was mostly enlarged with the increase of the EO content.

View Article and Find Full Text PDF