Publications by authors named "Xiaomao Fan"

Sleep staging is imperative for evaluating sleep quality and diagnosing sleep disorders. Extant sleep staging methods with fusing multiple data-views of physiological signals have achieved promising results. However, they remain neglectful of the relationship among different data-views at different feature scales with view position-alignment.

View Article and Find Full Text PDF

Over the past few decades, researchers have attempted to simplify and accelerate the process of sleep stage classification through various approaches; however, only a few such approaches have gained widespread acceptance. Artificial intelligence technology, particularly deep learning, is promising for earning the trust of the sleep medicine community in automated sleep-staging systems, thus facilitating its application in clinical practice and integration into daily life. We aimed to comprehensively review the latest methods that are applying deep learning for enhancing sleep staging efficiency and accuracy.

View Article and Find Full Text PDF

Explore a network architecture that can efficiently perform single-lead electrocardiogram (ECG) sleep apnea (SA) detection by utilizing the beneficial information of extended ECG segments and reducing the impact of their noisy information.We propose an effective deep-shallow fusion network (EDSFnet). The deeper residual network is used to extract high-level features with stronger semantics and less noise from the original ECG segments.

View Article and Find Full Text PDF

Sleep apnea (SA) is a common breathing disease, with clinical manifestations of sleep snoring at night with apnea and daytime sleepiness. It could lead to ischemic heart disease, stroke, or even sudden death. SpO signal is highly related to SA, and many automatic SA detection methods have been proposed.

View Article and Find Full Text PDF

Routine assessments of gait and balance have been recognized as an effective approach for preventing falls by issuing early warnings and implementing appropriate interventions. However, current limited public healthcare resources cannot meet the demand for continuous monitoring of deteriorations in gait and balance. The objective of this study was to develop and evaluate the feasibility of a prototype surrogate system driven by sensor technology and multi-sourced heterogeneous data analytics, for gait and balance assessment and monitoring.

View Article and Find Full Text PDF
Article Synopsis
  • Sleep apnea (SA) is a prevalent disorder that can lead to serious health issues, so early diagnosis and treatment are crucial for prevention.
  • This study introduces BAFNet, a novel network designed for detecting SA using single-lead ECG signals through portable monitoring.
  • BAFNet combines various techniques, including fully convolutional networks and bottleneck attention to enhance detection accuracy, outperforming existing methods and showing promise for home testing of sleep apnea.
View Article and Find Full Text PDF

Sleep apnea (SA) is a common sleep-related breathing disorder, which would lead to damage of multiple systemic organs or even sudden death. In clinical practice, portable device is an important tool to monitor sleep conditions and detect SA events by using physiological signals. However, SA detection performance is still limited due to physiological signals with time-variability and complexity.

View Article and Find Full Text PDF

Study Objectives: We evaluated the validity of a squeeze-and-excitation and multiscaled fusion network (SE-MSCNN) using single-lead electrocardiogram (ECG) signals for obstructive sleep apnea detection and classification.

Methods: Overnight polysomnographic data from 436 participants at the Sleep Center of the First Affiliated Hospital of Sun Yat-sen University were used to generate a new FAH-ECG dataset comprising 260, 88, and 88 single-lead ECG signal recordings for training, validation, and testing, respectively. The SE-MSCNN was employed for detection of apnea-hypopnea events from the acquired ECG segments.

View Article and Find Full Text PDF

Sleep stage classification is of great importance in human health monitoring and disease diagnosing. Clinically, visual-inspected classifying sleep into different stages is quite time consuming and highly relies on the expertise of sleep specialists. Many automated models for sleep stage classification have been proposed in previous studies but their performances still exist a gap to the real clinical application.

View Article and Find Full Text PDF

The accelerated growth of elderly populations in many countries and regions worldwide is creating a major burden to the healthcare system. Intelligent approaches for continuous health monitoring have the potential to promote the transition to more proactive and affordable healthcare. Electrocardiograms (ECGs), collected from portable devices, with noninvasive and cost-effective merits, have been widely used to monitor various health conditions.

View Article and Find Full Text PDF

Background: Major depressive disorder (MDD) is a common mental illness, characterized by persistent depression, sadness, despair, etc., troubling people's daily life and work seriously.

Methods: In this work, we present a novel automatic MDD detection framework based on EEG signals.

View Article and Find Full Text PDF

Depression is considered to be a major public health problem with significant implications for individuals and society. Patients with depression can be with complementary therapies such as acupuncture. Predicting the prognostic effects of acupuncture has a big significance in helping physicians make early interventions for patients with depression and avoid malignant events.

View Article and Find Full Text PDF

Background: In medicine, chromosome karyotyping analysis plays a crucial role in prenatal diagnosis for diagnosing whether a fetus has severe defects or genetic diseases. However, chromosome instance segmentation is the most critical obstacle to automatic chromosome karyotyping analysis due to the complicated morphological characteristics of chromosome clusters, restricting chromosome karyotyping analysis to highly depend on skilled clinical analysts.

Method: In this paper, we build a clinical dataset and propose multiple segmentation baselines to tackle the chromosome instance segmentation problem of various overlapping and touching chromosome clusters.

View Article and Find Full Text PDF

Estimating blood pressure via combination analysis with electrocardiogram and photoplethysmography signals has attracted growing interest in continuous monitoring patients' health conditions. However, most wearable/portal monitoring devices generally acquire only one kind of physiological signals due to the consideration of energy cost, device weight and size, etc. In this study, a novel adaptive weight learning-based multitask deep learning framework based on single lead electrocardiogram signals is proposed for continuous blood pressure estimation.

View Article and Find Full Text PDF

Background: The accelerated growth of elderly population is creating a heavy burden to the healthcare system in many developed countries and regions. Electrocardiogram (ECG) analysis has been recognized as effective approach to cardiovascular disease diagnosis and widely utilized for monitoring personalized health conditions.

Method: In this study, we present a novel approach to forecasting one-day-forward wellness conditions for community-dwelling elderly by analyzing single lead short ECG signals acquired from a station-based monitoring device.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is one of the most common sustained chronic cardiac arrhythmia in elderly population, associated with a high mortality and morbidity in stroke, heart failure, coronary artery disease, systemic thromboembolism, etc. The early detection of AF is necessary for averting the possibility of disability or mortality. However, AF detection remains problematic due to its episodic pattern.

View Article and Find Full Text PDF

Background: Long-term electrocardiogram (ECG) is one of the important diagnostic assistant approaches in capturing intermittent cardiac arrhythmias. Combination of miniaturized wearable holters and healthcare platforms enable people to have their cardiac condition monitored at home. The high computational burden created by concurrent processing of numerous holter data poses a serious challenge to the healthcare platform.

View Article and Find Full Text PDF

Background: Feature selection techniques have become an apparent need in biomarker discoveries with the development of microarray. However, the high dimensional nature of microarray made feature selection become time-consuming. To overcome such difficulties, filter data according to the background knowledge before applying feature selection techniques has become a hot topic in microarray analysis.

View Article and Find Full Text PDF

Ubiquitous healthcare services are becoming more and more popular, especially under the urgent demand of the global aging issue. Cloud computing owns the pervasive and on-demand service-oriented natures, which can fit the characteristics of healthcare services very well. However, the abilities in dealing with multimodal, heterogeneous, and nonstationary physiological signals to provide persistent personalized services, meanwhile keeping high concurrent online analysis for public, are challenges to the general cloud.

View Article and Find Full Text PDF