Publications by authors named "Xiaolu Shao"

COVID-19 has caused a huge impact on people's daily life and has made great damage on national economy. All the epidemic situation not only require the improvement of medical science, but also the corresponding auxiliary research field, e.g.

View Article and Find Full Text PDF

Determining ecotoxicological risks of exposure to mixtures of endocrine disrupting chemicals (EDCs) remains a daunting challenge in environmental toxicology. Recently, some studies have illustrated that transcriptional profiling of genes offers the potential to identify the chemical causation of effects that are induced by exposure to complex mixtures. In the present study, the transcriptional responses of a set of genes involved in the hypothalamic-pituitary-gonadal (HPG, or HPG[L]-liver) axis of Japanese medaka (Oryzias latipes) were systematically examined after treatment with a combination of an estrogen (17α-ethinylestradiol [EE2], 20 ng/L) and two model anti-estrogens, the aromatase inhibitor (AI) letrozole (LET) and the selective estrogen-receptor modulator (SERM) tamoxifen (TAM), at three concentrations (30, 100 and 300 μg/L) for 72 h.

View Article and Find Full Text PDF

Accumulating evidence suggests that environmental endocrine disrupting chemicals (EDCs) may exert adverse effects on aquatic organisms via the modulation of immune competence in addition to the endocrine system. However, to date, most studies have been undertaken only on biochemical and histopathological endpoints, and few studies have addressed the role of immune response gene transcript abundance in response to estrogen. In the present study, the ontogenetic expression of immune-related genes, including three complement components (C3-1, C3-2 and Bf/C2), two cytokines (IL-21 and type I IFN [IFN]), lysozyme (LZM), novel immune-type receptor (NITR-18), Ikaros (IK) and ceruloplasmin (CP) were characterized during different developmental periods (from 0 to 28 d post-hatch [dph]) in Japanese medaka.

View Article and Find Full Text PDF

The study of endocrine disruption is being increasingly conducted at the mRNA level of genes, as this approach might yield insight into the modes of action and mechanisms of toxicity. In this study, the transcriptional responses of a set of functionally relevant genes associated with the pathways of the hypothalamic-pituitary-gonadal (HPG; or HPG[L]-liver) axis of Japanese ricefish were examined after treatment with two model anti-estrogens, letrozole (LET) and tamoxifen (TAM), at three concentrations (30, 100 and 300μg/L) for 72h. The results showed that LET and TAM produced distinct expression profiles in a complex tissue- and gender-specific manner, confirming that they exert their anti-estrogenic effects via different molecular mechanisms.

View Article and Find Full Text PDF

Growing concern over possible adverse effects of endocrine-disrupting chemicals (EDCs) has driven the development of associated screening methods. The use of the vitellogenin (VTG) induction response in cultured teleost hepatocytes has been suggested as an in vitro screening assay for EDCs. However, current data do not sufficiently support this assay in the routine screening of chemicals.

View Article and Find Full Text PDF