Publications by authors named "Xiaolong Shan"

"Birds of a feather flock together" and "opposites attract" are two contrasting statements regarding interpersonal relationships. Sex differences provide a theoretical integration of these two conflicting statements. Here, we explored the relationship between marital satisfaction and sex differences in social attributes and neuroanatomical characteristics in 48 married couples.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition. Over the past decade, a considerable number of approaches have been developed to identify potential neuroimaging-based biomarkers of ASD that have uncovered specific neural mechanisms that underlie behaviors associated with ASD. However, the substantial heterogeneity among individuals who are diagnosed with ASD hinders the development of biomarkers.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is characterized by social difficulties and often accompanied by internalizing and externalizing problems, which are frequently overlooked. Here, we examined and compared fractional anisotropy (FA) between 79 children with ASD (aged 4-7.8 years) and 70 age-, gender-, and handedness- matched typically developing controls (TDCs, aged 3-7.

View Article and Find Full Text PDF

Although it is well recognized that autism spectrum disorder (ASD) is associated with atypical dynamic functional connectivity patterns, the dynamic changes in brain intrinsic activity over each time point and the potential molecular mechanisms associated with atypical dynamic temporal characteristics in ASD remain unclear. Here, we employed the Hidden Markov Model (HMM) to explore the atypical neural configuration at every scanning time point in ASD, based on resting-state functional magnetic resonance imaging (rs-fMRI) data from the Autism Brain Imaging Data Exchange. Subsequently, partial least squares regression and pathway enrichment analysis were employed to explore the potential molecular mechanism associated with atypical neural dynamics in ASD.

View Article and Find Full Text PDF

Background: Family environment has long been known for shaping brain function and psychiatric phenotypes, especially during childhood and adolescence. Accumulating neuroimaging evidence suggests that across different psychiatric disorders, common phenotypes may share common neural bases, indicating latent brain-behavior relationships beyond diagnostic categories. However, the influence of family environment on the brain-behavior relationship from a transdiagnostic perspective remains unknown.

View Article and Find Full Text PDF

Objective: There has been increasing evidence for atypical white matter (WM) microstructure in autistic people, but findings have been divergent. The development of autistic people in early childhood is clouded by the concurrently rapid brain growth, which might lead to the inconsistent findings of atypical WM microstructure in autism. Here, we aimed to reveal the developmental nature of autistic children and delineate atypical WM microstructure throughout early childhood while taking developmental considerations into account.

View Article and Find Full Text PDF

Background: Despite considerable effort toward understanding the neural basis of autism spectrum disorder (ASD) using case-control analyses of resting-state functional magnetic resonance imaging data, findings are often not reproducible, largely due to biological and clinical heterogeneity among individuals with ASD. Thus, exploring the individual-shared and individual-specific altered functional connectivity (AFC) in ASD is important to understand this complex, heterogeneous disorder.

Methods: We considered 254 individuals with ASD and 295 typically developing individuals from the Autism Brain Imaging Data Exchange to explore the individual-shared and individual-specific subspaces of AFC.

View Article and Find Full Text PDF

Much recent attention has been directed toward investigating the spatial and temporal organization of brain dynamics, but the rules which constrain the variation of spatio-temporal organization in functional connectivity under different brain states remain unclear. Here, we developed a novel computational approach based on tensor decomposition and regularization to represent dynamic functional connectivity as a linear combination of dynamic modules and time-varying weights. In this approach, dynamic modules represent co-activating functional connectivity patterns, and time-varying weights represent the temporal expression of dynamic modules.

View Article and Find Full Text PDF

Marital attachment plays an important role in maintaining intimate personal relationships and sustaining psychological well-being. Mate-selection theories suggest that people are more likely to marry someone with a similar personality and social status, yet evidence for the association between personality-based couple similarity measures and marital satisfaction has been inconsistent. A more direct and useful approach for understanding fundamental processes underlying marital satisfaction is to probe similarity of dynamic brain responses to maritally and socially relevant communicative cues, which may better reflect how married couples process information in real time and make sense of their mates and themselves.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by substantial clinical and biological heterogeneity. Quantitative and individualized metrics for delineating the heterogeneity of brain structure in ASD are still lacking. Likewise, the extent to which brain structural metrics of ASD deviate from typical development (TD) and whether deviations can be used for parsing brain structural phenotypes of ASD is unclear.

View Article and Find Full Text PDF

Individual-based morphological brain networks built from T1-weighted magnetic resonance imaging (MRI) reflect synchronous maturation intensities between anatomical regions at the individual level. Autism spectrum disorder (ASD) is a socio-cognitive and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the specific patterns of morphological networks in ASD remain largely unexplored at the individual level. In this study, individual-based morphological networks were constructed by using high-resolution structural MRI data from 40 young children with ASD (age range: 2-8 years) and 38 age-, gender-, and handedness-matched typically developing children (TDC).

View Article and Find Full Text PDF

Much recent attention has been directed toward elucidating the structure of social interaction-communication dimensions and whether and how these symptom dimensions coalesce with each other in individuals with autism spectrum disorder (ASD). However, the underlying neurobiological basis of these symptom dimensions is unknown, especially the association of social interaction and communication dimensions with brain networks. Here, we proposed a method of whole-brain network-based regression to identify the functional networks linked to these symptom dimensions in a large sample of children with ASD.

View Article and Find Full Text PDF

Abnormalities in the structure of subcortical regions are central to numerous behaviors affected by autism spectrum disorder (ASD), and these regions may undergo atypical coordinated neurodevelopment. However, relatively little is known about morphological correlations among subcortical structures in young children with ASD. In this study, using volumetric-based methodology and structural covariance approach, we investigated structural covariance of subcortical brain volume in 40 young children with ASD (<7.

View Article and Find Full Text PDF