Publications by authors named "Xiaolong Lyu"

Plants have evolved multiple complex mechanisms enabling them to adapt to low nitrogen (LN) stress via increased nitrogen use efficiency (NUE) as nitrogen deficiency in soil is a major factor limiting plant growth and development. However, the adaptive process and evolutionary roles of LN tolerance-related genes in plants remain largely unknown. In this study, we resequenced 191 watermelon accessions and examined their phenotypic differences related to LN tolerance.

View Article and Find Full Text PDF

Plant evolution is driven by key innovations of functional traits that enables their survivals in diverse ecological environments. However, plant adaptive evolution from land to atmospheric niches remains poorly understood. In this study, we use the epiphytic Tillandsioideae subfamily of Bromeliaceae as model plants to explore their origin, evolution and diversification.

View Article and Find Full Text PDF

Eukaryotic translation initiation factors (eIFs) are the primary targets for overcoming RNA virus resistance in plants. In a previous study, we mapped a BjeIF2Bβ from Brassica juncea representing a new class of plant virus resistance genes associated with resistance to Turnip mosaic virus (TuMV). However, the mechanism underlying eIF2Bβ-mediated virus resistance remains unclear.

View Article and Find Full Text PDF

Peas are essential for human nutrition and played a crucial role in the discovery of Mendelian laws of inheritance. In this study, we assembled the genome of the elite vegetable pea cultivar 'Zhewan No. 1' at the chromosome level and analyzed resequencing data from 314 accessions, creating a comprehensive map of genetic variation in peas.

View Article and Find Full Text PDF
Article Synopsis
  • Fruit length is really important for how pumpkins look and how many can be grown.
  • Researchers studied two types of pumpkins, one with long fruits and one with short fruits, to figure out which gene affects the fruit length.
  • They found a special gene that might help control how long pumpkins grow by affecting how cells divide, which could help farmers breed better pumpkins in the future.
View Article and Find Full Text PDF

Background: Flesh firmness is a critical factor that influences fruit storability, shelf-life and consumer's preference as well. However, less is known about the key genetic factors that are associated with flesh firmness in fresh fruits like watermelon.

Results: In this study, through bulk segregant analysis (BSA-seq), we identified a quantitative trait locus (QTL) that influenced variations in flesh firmness among recombinant inbred lines (RIL) developed from cross between the Citrullus mucosospermus accession ZJU152 with hard-flesh and Citrullus lanatus accession ZJU163 with soft-flesh.

View Article and Find Full Text PDF

The ClLOG gene encoding a cytokinin riboside 5'-monophosphate phosphoribohydrolase determines trichome length in watermelon, which is associated with its promoter variations. Trichomes, which are differentiated from epidermal cells, are special accessory structures that cover the above-ground organs of plants and possibly contribute to biotic and abiotic stress resistance. Here, a bulked segregant analysis (BSA) of an F population with significant variations in trichome length was undertaken.

View Article and Find Full Text PDF

The ClACO gene encoding 1-aminocyclopropane-1-carboxylate oxidase enabled highly efficient N uptake in watermelon. Nitrogen is one of the most essential nutrient elements that play a pivotal role in regulating plant growth and development for crop productivity. Elucidating the genetic basis of high nitrogen uptake is the key to improve nitrogen use efficiency for sustainable agricultural productivity.

View Article and Find Full Text PDF

Sweetness and appearance of fresh fruits are key palatable and preference attributes for consumers and are often controlled by multiple genes. However, fine-mapping the key loci or genes of interest by single genome-based genetic analysis is challenging. Herein, we present the chromosome-level genome assembly of 1 landrace melon accession (Cucumis melo ssp.

View Article and Find Full Text PDF

The Allium genus is cultivated globally as vegetables, condiments, or medicinal plants and is characterized by large genomes and strong pungency. However, the genome evolution and genomic basis underlying their unique flavor formation remain poorly understood. Herein, we report an 11.

View Article and Find Full Text PDF

Hull-less pumpkins ( L.) are naturally occurring novel variants known as oilseed or naked-seeded pumpkins, and are characterized by the absence of a normal lignified seed coat. Due to a specialized seed coat structure, these variants serve as a good model for studying seed coat formation and simplify the processing of pumpkin seeds.

View Article and Find Full Text PDF

Gene mining in a C. lanatus × C. amarus population revealed one gene, ACS7, linked to primary root elongation in watermelon.

View Article and Find Full Text PDF

Purpose: Kinesiophobia (fear of movement) is a major limiting factor in the return to pre-injury sport level after surgery of rotator cuff tears. The study aims to gain insights into how kinesiophobia affects shoulder pain and function after the repair of full-thickness rotator cuff tears.

Methods: A prospective study was conducted to evaluate patients who underwent rotator cuff repair between January 2019 and December 2019 in our institution.

View Article and Find Full Text PDF

Mitochondrial retrograde signaling (MRS) plays an essential role in sensing and responding to internal and external stimuli to optimize growth to adapt to the prevailing environmental conditions. Previously studies showed alterations on MRS in cytoplasmic male sterile (CMS) plant. However, the regulators involved in MRS in CMS plants remain largely unknown.

View Article and Find Full Text PDF

Allopolyploid Brassica juncea crops in Brassicaceae are becoming increasingly revitalized as vegetables and oilseeds owing to wide adaptability and significant economic values. However, the genomic differentiation of diversified vegetables and oilseed B. juncea and the genetic basis underlying glucosinolates accumulation have yet to be elucidated.

View Article and Find Full Text PDF

Fruit rind plays a pivotal role in alleviating water loss and disease and particularly in cracking resistance as well as the transportability, storability and shelf-life quality of the fruit. High susceptibility to cracking due to low rind hardness is largely responsible for severe annual yield losses of fresh fruits such as watermelon in the field and during the postharvest process. However, the candidate gene controlling the rind hardness phenotype remains unclear to date.

View Article and Find Full Text PDF

The 'neglected' thermophile fruit crop of watermelon was first used as a model crop to study the PCD associated with anther dehiscence in cold-exposed condition during anther development. Anther dehiscence ensures normal pollen release and successful fertilization at fruit-setting stages in flowering plants. However, most researches pertinent to anther dehiscence are centered on model plant and/or major field crops under optimal growth condition.

View Article and Find Full Text PDF