Publications by authors named "Xiaolong Luke Zhang"

The visualization of streaming high-dimensional data often needs to consider the speed in dimensionality reduction algorithms, the quality of visualized data patterns, and the stability of view graphs that usually change over time with new data. Existing methods of streaming high-dimensional data visualization primarily line up essential modules in a serial manner and often face challenges in satisfying all these design considerations. In this research, we propose a novel parallel framework for streaming high-dimensional data visualization to achieve high data processing speed, high quality in data patterns, and good stability in visual presentations.

View Article and Find Full Text PDF

Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible.

View Article and Find Full Text PDF

Arguably the most representative application of artificial intelligence, autonomous driving systems usually rely on computer vision techniques to detect the situations of the external environment. Object detection underpins the ability of scene understanding in such systems. However, existing object detection algorithms often behave as a black box, so when a model fails, no information is available on When, Where and How the failure happened.

View Article and Find Full Text PDF

Autonomous driving technologies often use state-of-the-art artificial intelligence algorithms to understand the relationship between the vehicle and the external environment, to predict the changes of the environment, and then to plan and control the behaviors of the vehicle accordingly. The complexity of such technologies makes it challenging to evaluate the performance of autonomous driving systems and to find ways to improve them. The current approaches to evaluating such autonomous driving systems largely use a single score to indicate the overall performance of a system, but domain experts have difficulties in understanding how individual components or algorithms in an autonomous driving system may contribute to the score.

View Article and Find Full Text PDF

In immersive virtual reality (VR) environments, users rely on the vision channel to search for objects. Such eyes-engaged interactive techniques may significantly degrade the interaction efficiency and user experience, particularly when users have to turn their head frequently to search for a target object in the limited field of view (FOV) of a head-mounted display (HMD). In this study, we systematically investigated user capabilities in eyes-free spatial target acquisition considering different horizontal angles, vertical angles, distances from the user's body, and body sides.

View Article and Find Full Text PDF

Social media data with geotags can be used to track people's movements in their daily lives. By providing both rich text and movement information, visual analysis on social media data can be both interesting and challenging. In contrast to traditional movement data, the sparseness and irregularity of social media data increase the difficulty of extracting movement patterns.

View Article and Find Full Text PDF

Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied.

View Article and Find Full Text PDF