Publications by authors named "Xiaolong Ke"

Deterministic computer-controlled optical finishing is an essential approach for achieving high-quality optical surfaces. Its determinism and convergence rely heavily on precise and smooth motion control to guide the machine tool over an optical surface to correct residual errors. One widely supported and smooth motion control model is position-velocity-time (PVT), which employs piecewise cubic polynomials to describe positions.

View Article and Find Full Text PDF

Previously, the effect of soil mineral N deficiency on nodule nitrogen fixation capacity (NFC) is unclear. In this study, we found that N deficiency would enhance sucrose allocation to nodules and PEP allocation to bacteroid to promote nodule NFC. Our findings provide new insights into the design of leguminous crops with improved adaptation to fluctuating N levels in the soil.

View Article and Find Full Text PDF

Legume-rhizobium symbiotic nitrogen fixation is a highly energy-consuming process. Recent studies demonstrate that nodule-specific energy sensors play important roles in modulating nodule nitrogen fixation capacity. This opens a new field in the energy regulation of symbiotic nitrogen fixation that can provide insights into designing leguminous crops with efficient nitrogen fixation.

View Article and Find Full Text PDF

Pentatricopeptide repeat (PPR) proteins form a large protein family and have diverse functions in plant development. Here, we identified an ALBINO EMBRYO AND SEEDLING (AES) gene that encodes a P-type PPR protein expressed in various tissues, especially the young leaves of Arabidopsis (Arabidopsis thaliana). Its null mutant aes exhibited a collapsed chloroplast membrane system, reduced pigment content and photosynthetic activity, decreased transcript levels of PEP (plastid-encoded polymerase)-dependent chloroplast genes, and defective RNA splicing.

View Article and Find Full Text PDF

Grazing-incidence reflective optics are commonly used in synchrotron radiation and free-electron laser facilities to transport and focus the emitted X-ray beams. To preserve the imaging capability at the diffraction limit, the fabrication of these optics requires precise control of both the residual height and slope errors. However, all the surface figuring methods are height based, lacking the explicit control of surface slopes.

View Article and Find Full Text PDF

Tungsten carbide (WC) has the characteristics of high hardness, high strength, corrosion resistance, wear resistance and excellent fracture toughness. Accordingly, it has been commonly used as the material for cutting tools and molds in glass-forming techniques. To obtain ultra-smooth surfaces, fine polishing of WC is indispensable.

View Article and Find Full Text PDF

Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown.

View Article and Find Full Text PDF

Deterministic optics fabrication using sub-aperture tools has been vital for manufacturing precision optical surfaces. The fabrication process requires the tool influence function and the tool path to calculate the dwell time that guides the tool to bring surface quality within tight design tolerances. Widely used spiral and raster paths may leave excess waviness from the tool path, and the unavoidable constant removal layer is added to obtain positive dwell time.

View Article and Find Full Text PDF

With the rapid development of precision technologies, the demand of high-precision optical surfaces has drastically increased. These optical surfaces are mainly fabricated with computer controlled optical surfacing (CCOS). In a CCOS process, a target surface removal profile is achieved by scheduling the dwell time for a set of machine tools.

View Article and Find Full Text PDF

The incorporation of superelastic shape memory alloy (SMA) fibers into engineered cementitious composite (ECC) materials can provide high seismic energy dissipation and deformation self-centering capabilities for ECC materials. Whether the SMA fibers can be sufficiently bonded or anchored in the ECC matrix and whether the mechanical properties of the SMA fibers in the ECC matrix can be effectively utilized are the key scientific issues that urgently need to be studied. In order to study the mechanical behavior of SMA fiber embedded in ECC matrix, four groups of semi-dog-bone pullout specimens were fabricated, and the cyclic pullout tests were conducted in this paper.

View Article and Find Full Text PDF

Ti6Al4V alloy has been widely used in many fields, such as aerospace and medicine, due to its excellent biocompatibility and mechanical properties. Most high-performance components made of Ti6Al4V alloy usually need to be polished to produce their specific functional requirements. However, due to the material properties of Ti6Al4V, its polishing process still requires significant development.

View Article and Find Full Text PDF

Computer-Controlled Optical Surfacing (CCOS) has been greatly developed and widely used for precision optical fabrication in the past three decades. It relies on robust dwell time solutions to determine how long the polishing tools must dwell at certain points over the surfaces to achieve the expected forms. However, as dwell time calculations are modeled as ill-posed deconvolution, it is always non-trivial to reach a reliable solution that 1) is non-negative, since CCOS systems are not capable of adding materials, 2) minimizes the residual in the clear aperture 3) minimizes the total dwell time to guarantee the stability and efficiency of CCOS processes, 4) can be flexibly adapted to different tool paths, 5) the parameter tuning of the algorithm is simple, and 6) the computational cost is reasonable.

View Article and Find Full Text PDF

Precision optics have been widely required in many advanced technological applications. X-ray mirrors, as an example, serve as the key optical components at synchrotron radiation and free electron laser facilities. They are rectangular silicon or glass substrates where a rectangular Clear Aperture (CA) needs to be polished to sub-nanometer Root Mean Squared (RMS) to keep the imaging capability of the incoming X-ray wavefront at the diffraction limit.

View Article and Find Full Text PDF

Fabrication of large optics is a time-consuming process and requires a vast investment in manpower and financial resources. Increasing the material removal rate of polishing tools and minimizing dwell time are two common ways of reducing the processing time. Indeed, the polishing efficiency can be further improved if multiple tools are used at the same time.

View Article and Find Full Text PDF

The endosperm and embryo originate from the fertilized central cell and egg cell through a programmed series of cell division and differentiation events. Characterization of more vital genes involved in endosperm and embryo development can help us to understand the regulatory mechanism in more depth. In this study, we found that loss of NAA10 and NAA15, the catalytic and auxiliary subunits of Arabidopsis thaliana N-terminal acetyltransferase A (AtNatA), respectively, led to severely delayed and incomplete endosperm cellularization, accompanied by disordered cell division in the early embryo.

View Article and Find Full Text PDF

Chaperonins are a class of molecular chaperones that assist in the folding and assembly of a wide range of substrates. In plants, chloroplast chaperonins are composed of two different types of subunits, Cpn60α and Cpn60β, and duplication of Cpn60α and Cpn60β genes occurs in a high proportion of plants. However, the importance of multiple Cpn60α and Cpn60β genes in plants is poorly understood.

View Article and Find Full Text PDF