Publications by authors named "Xiaoliu Huangfu"

Article Synopsis
  • Manganese oxide-based filtration is an effective, cost-efficient method for removing thallium from engineered systems, although there are gaps in understanding its long-term effectiveness.
  • α-MnO demonstrated a high potential for thallium removal, showing a significant increase in irreversible removal rates (81%-95%) over a 584-hour period under various conditions.
  • The study reveals critical mechanisms, such as the oxidation of thallium, driven by surface Mn(III)-O interactions, highlighting how different environmental factors influence thallium binding and removal effectiveness in manganese oxide systems.
View Article and Find Full Text PDF
Article Synopsis
  • * This review discusses the biochemical transformations of Tl, its speciation, toxicity mechanisms, and the interactions between (micro)organisms and Tl, along with bioremediation strategies to address Tl contamination.
  • * Key research gaps are identified, including the need to understand Tl's distribution in the atmosphere and ocean, discover microorganisms that can oxidize Tl, and clarify its biogeochemical cycling pathways.
View Article and Find Full Text PDF

Introduction: Simultaneous chemical phosphorus removal process using iron salts (Fe(III)) has been widely utilized in wastewater treatment to meet increasingly stringent discharge standards. However, the inhibitory effect of Fe(III) on the biological phosphorus removal system remains a topic of debate, with its precise mechanism yet to be fully understood.

Methods: Batch and long-term exposure experiments were conducted in six sequencing batch reactors (SBRs) operating for 155 days.

View Article and Find Full Text PDF

Rapid advances in machine learning (ML) provide fast, accurate, and widely applicable methods for predicting free radical-mediated organic pollutant reactivity. In this study, the rate constants (logk) of four halogen radicals were predicted using Morgan fingerprint (MF) and Mordred descriptor (MD) in combination with a series of ML models. The findings highlighted that making accurate predictions for various datasets depended on an effective combination of descriptors and algorithms.

View Article and Find Full Text PDF

Thallium (Tl) is a potential toxicity element that poses significant ecological and environmental risks. Recently, a substantial amount of Tl has been released into the environment through natural and human activities, which attracts increasing attention. The determination of this hazardous and trace element is crucial for controlling its pollution.

View Article and Find Full Text PDF

Biochar colloids entering the soil undergo aging over time and exhibit strong capabilities in adsorbing and transporting pollutants. Therefore, investigating the cotransport of aged biochar colloids and thallium (Tl(I)) in quartz sand media is crucial for understanding Tl(I) migration in underground environments. This study investigated the migration of biochar colloids with two different aging degrees and Tl(I) in quartz sand media at various pH and ionic strengths (ISs).

View Article and Find Full Text PDF

Despite the occurrence of thallium (Tl) in the acidic mining-affected areas being highly positively correlated with iron (Fe) and arsenic (As), the effects of the two accompanying elements on Tl redox transformation and immobilization remain largely unknown. Here, we investigated the photochemical redox kinetics and immobilization efficiency of Tl for a wide range of As/Fe and As/Tl ratios under acidic conditions. We provided the first experimental confirmation of the complexation of Tl(III) with As(V) by the spectrophotometric method and revealed the role of Tl(III)-As(V) complexes in decreasing the photoreduction rate of Tl(III) under sunlight.

View Article and Find Full Text PDF

Carbonaceous materials are commonly used as adsorbents for heavy metals. The determination of the adsorption capacity needs time and energy, and the key factors affecting the adsorption capacity have not been determined. Therefore, a new and efficient method is needed to predict the adsorption capacity and explore the decisive factors in the adsorption process.

View Article and Find Full Text PDF

Although the sorption of antibiotics in soil has been extensively studied, their spatial distribution patterns and sorption mechanisms still need to be clarified, which hinders the assessment of antibiotic resistance risk. In this study, machine learning was employed to develop the models for predicting the soil sorption behavior of three classes of antibiotics (sulfonamides, tetracyclines, and fluoroquinolones) in 255 soils with 2203 data points. The optimal independent models obtained an accurate predictive performance with R of 0.

View Article and Find Full Text PDF

Treatment of industrial thallium(Tl)-containing wastewater is crucial for mitigating environmental risks and health threats associated with this toxic metal. The incorporation of Mn oxides (MnOx) into the filtration system is a promising solution for efficient Tl(I) removal. However, further research is needed to elucidate the underlying mechanism behind MnOx-enhanced filtration and the rules of its stable operation.

View Article and Find Full Text PDF

The long-term and stable removal of thallium (Tl) from industrial wastewater generated by mining and smelting operations remains challenging. While sand filters are commonly applied for the simultaneous removal of Mn(II) and other heavy metals, they have limited efficacy in treating Tl-contaminated wastewater. To address this gap, we operated a lab-scale Mn sand filter (MF) without added microorganisms to investigate the efficiency and mechanisms of Mn(II) and Tl(I) removal.

View Article and Find Full Text PDF

The highly toxic heavy metal thallium is widely distributed in sulfide ores and released into the environment by sulfide mining. However, the interface between the sulfide minerals and Tl(I) is unclear. In this study, the capacity for adsorption of thallium(I) by a common sulfide mineral (zinc sulfide) was investigated in aerobic and anaerobic environments, which revealed three mechanisms for adsorption on the ZnS surface (surface complexation, electrostatic action and oxidation promotion).

View Article and Find Full Text PDF

The epidemic of coronaviruses has posed significant public health concerns in the last two decades. An effective disinfection scheme is critical to preventing ambient virus infections and controlling the spread of further outbreaks. Ultraviolet (UV) irradiation has been a widely used approach to inactivating pathogenic viruses.

View Article and Find Full Text PDF

Anaerobic digestion (AD) is a favorable way to convert organic pollutants, such as food waste (FW), into clean energy through microbial action. This work adopted a side-stream thermophilic anaerobic digestion (STA) strategy to improve a digestive system's efficiency and stability. Results showed that the STA strategy brought higher methane production as well as higher system stability.

View Article and Find Full Text PDF

Widely distributed soil humic acid (HA) would significantly affect the environmental migration behavior of Tl(I), but a quantitative and mechanistic understanding of the dynamic Tl(I) retention process on HA is limited. A unified kinetic model was established by coupling the humic ion-binding model with a stirred-flow kinetic model, which quantified the complexation constants and responsiveness coefficients during dynamic Tl(I)-HA complexation. Furthermore, the heterogeneous complexation mechanism of HA and Tl(I) was revealed by batch adsorption experiments, stirred-flow migration experiments, and 2D-FTIR-COS analysis.

View Article and Find Full Text PDF

Thallium (Tl) redox state determines its speciation and fate in aqueous environments. Despite the high potential of natural organic matter (NOM) providing the reactive groups to complex and reduce Tl(III), the kinetics and mechanisms by which NOM influences the Tl redox transformation have remained insufficiently understood. Here, we studied the reduction kinetics of Tl(III) in acidic Suwannee River fulvic acid (SRFA) solutions under dark and solar-irradiated conditions.

View Article and Find Full Text PDF

Microorganisms can oxidize Mn(II) to biogenic Mn oxides (BioMnOx), through enzyme-mediated processes and non-enzyme-mediated processes, which are generally considered as the source and sink of heavy metals due to highly reactive to sequestrate and oxidize heavy metals. Hence, the summary of interactions between Mn(II) oxidizing microorganisms (MnOM) and heavy metals is benefit for further work on microbial-mediated self-purification of water bodies. This review comprehensively summarizes the interactions between MnOM and heavy metals.

View Article and Find Full Text PDF

Previous studies have shown that high salinity environments can inhibit anaerobic digestion (AD) of food waste (FW). Finding ways to alleviate salt inhibition is important for the disposal of the growing amount of FW. We selected three common conductive materials (powdered activated carbon, magnetite, and graphite) to understand their performance and individual mechanisms that relieve salinity inhibition.

View Article and Find Full Text PDF

Thallium contamination in water can cause great danger to the environment. In this study, we synthesized manganese oxide-coated sand (MOCS) and investigated the transport and retention behaviors of Tl(I) in MOCS under different conditions. Characterization methods combined with a two-site nonequilibrium transport model were applied to explore the retention mechanisms.

View Article and Find Full Text PDF

Due to the widespread application of various iron (Fe)-derived substances used in phosphorus (P) removal during wastewater treatment, Fe-P species generated in this process constitute an important part of P speciation in non-digested sludge. SEM-EDS and sequential extraction methods were utilized to analyze the speciation, distribution, and spatial variation of P contained in the sludge. Inorganic P accounted for 91.

View Article and Find Full Text PDF

Understanding the migration behavior of thallium (TI) in subsurface environments is essential for Tl pollution prevention. With the wide production and utilization of biochar, the notable ability of biochar colloids to carry environmental contaminants may make these colloids important for Tl(I) mobility. This study systematically investigated the impact of wood-derived biochar (WB) and corn straw-derived biochar (CB) colloids on Tl(I) transport in water-saturated porous media under different pH (5, 7 and 10) and ionic strengths (ISs) (1, 5 and 50 mM NaNO).

View Article and Find Full Text PDF

Silver nanoparticles (Ag-NPs) were found to be responsible for nitrous oxide (NO) generation; however, the mechanism of Ag-NP induced NO production remains controversial and needs to be elucidated. In this study, chronic Ag-NP exposure experiments were conducted in five independent sequencing batch biofilm reactors to systematically assess the effects of Ag-NPs on NO emission. The results indicated that a low dose of Ag-NPs (< 1 mg/L) slightly suppressed NO generation by less than 22.

View Article and Find Full Text PDF

The reversibility of monovalent thallium (Tl) absorption on widely distributed iron/manganese secondary minerals may affect environmental Tl migration and global cycling. Nevertheless, quantitative and mechanistic studies on the interfacial retention and release reactions involving Tl(I) are limited. In this study, batch and stirred-flow experiments, unified kinetics modeling, spectral detection, and theoretical calculations were used to elucidate the retention behaviors of Tl(I) on goethite, hematite, and manganite with different solution pH values and Tl loading concentrations.

View Article and Find Full Text PDF
Article Synopsis
  • The transformation between Tl(I) and Tl(III) oxidation states significantly affects thallium's toxicity, reactivity, and mobility in the environment.
  • UV light and hydroxyl radicals (HO) were found to play crucial roles in the redox cycles of thallium in acidic iron (Fe(III)) solutions, influencing Tl(III) reduction and Tl(I) oxidation.
  • The study developed kinetic models to describe the interactions between thallium and iron redox processes, highlighting how factors like pH, Fe(III) concentration, and light source affect thallium's behavior in acidic mine drainages.
View Article and Find Full Text PDF

The oxidation of thallium(I) (Tl (I)) to Tl (III) is referred to as an efficient means for Tl removal. Bromide (Br‾) inevitably occurs in nearly all water sources at concentrations of 0.01-67 mg/L (0.

View Article and Find Full Text PDF