Publications by authors named "Xiaolian Chen"

Cancer treatment faces significant challenges including inadequate tumor specificity, drug resistance, and severe side effects, often resulting in unsatisfactory patient outcomes. Nanomedicines offer a transformative platform for tumor-targeted drug delivery and antitumor potency activation, providing an indispensable strategy for overcoming the severe damage to normal tissues caused by the inherent "always-on" cytotoxicity of conventional therapeutic agents. This review focuses on the emerging concept of "nanoparticle-enabled in situ drug potency activation", where inactive or minimally toxic agents are selectively activated within tumors to enhance the therapeutic efficacy and minimize the adverse effects.

View Article and Find Full Text PDF

Drug treatment studies are a focal point for identifying novel approaches to reduce myopia progression through basic science research. Here, we investigated the effects of various brimonidine administration routes and concentrations on form-deprivation myopia (FDM) progression, matrix metalloproteinase-2 (MMP-2), and collagen alpha1 chain of type I (COL1A1) expression in the retinal pigment epithelial (RPE)-choroid complex and sclera of guinea pigs. They demonstrate that brimonidine has the capacity to impede choroidal thinning induced by FDM, potentially through the induction of choroidal vasodilation.

View Article and Find Full Text PDF

Introduction: Plant essential oils (PEOs) have received significant attention in animal production due to their diverse beneficial properties and hold potential to alleviate weaning stress. However, PEOs effectiveness is often compromised by volatility and degradation. Microencapsulation can enhance the stability and control release rate of essential oils.

View Article and Find Full Text PDF

In order to cope with the limited supply of feed for global animal production, there is a pressing need to explore alternative feed resources. Orange pulp, a by-product of agriculture and industry, has shown potential to positively or neutrally impact pig productive performance when included in their diet. However, there is a lack of research on the effects of fermented navel orange pulp (FNOP) on pig growth and productive performance.

View Article and Find Full Text PDF

Background: The popularity of Muscovy ducks is attributed not only to their conformation traits but also to their slightly higher content of breast and leg meat, as well as their stronger-tasting meat compared to that of typical domestic ducks. However, there is a lack of comprehensive systematic research on the development of breast muscle in Muscovy ducks. In addition, since the number of skeletal muscle myofibers is established during the embryonic period, this study conducted a full-length transcriptome sequencing and microRNA sequencing of the breast muscle.

View Article and Find Full Text PDF

Electrical stimulation (ES) is proposed as a therapeutic solution for managing chronic wounds. However, its widespread clinical adoption is limited by the requirement of additional extracorporeal devices to power ES-based wound dressings. In this study, a novel sandwich-structured photovoltaic microcurrent hydrogel dressing (PMH dressing) is designed for treating diabetic wounds.

View Article and Find Full Text PDF

Introduction: Honeycomb is a traditional natural health medicine and has antioxidant, antibacterial, anti-inflammatory, antiviral and antitumor activities. It is currently unclear whether honeycomb extract supplementation has positive effects on the intensive farming laying duck production. This study aims to evaluate the effects of honeycomb extracts on the laying performance, egg nutritional and flavor quality, serum biochemical indexes, and antioxidant and immune status in laying ducks.

View Article and Find Full Text PDF

Chinese indigenous chickens have a long history of natural and artificial selection and are popular for their excellent meat quality and unique flavor. This study investigated six meat quality-related traits in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens. Two-dimensional gas chromatography-time-of-flight mass spectrometry was used to detect unique flavors in 24 breast muscle samples from the same phenotyped chickens.

View Article and Find Full Text PDF

Traditional Chinese herbs have been widely researched as a green, safe, and effective feed additive for poultry. The purpose of this study was to investigate the effects of traditional Chinese prescription (TCP) based on various herbs in a specific ratio on the growth performance, carcass traits, immunity, antioxidant level, and intestinal health of Ningdu yellow chickens. A total of 420 female Ningdu yellow chickens were randomly divided into 5 groups, with 6 replicates of 14 each.

View Article and Find Full Text PDF

Here, we examined the effects of crossbreeding and sex on growth performance, slaughter performance, and meat quality in Xingguo gray (XG) goose, using transcriptomic and metabolomic techniques. The experiment was conducted using 400 goslings (1-day old) of 2 genotypes: the XG breed and its ternary hybrids [F geese; (XG Goose♂ × Yangzhou Goose♀)♀ × Shitou Goose♂]. The goslings were divided into 4 groups: female XG, male XG, female F geese, and male F geese, and growth parameters were examined at 70 d of age, using 30 birds from each group.

View Article and Find Full Text PDF

Textile-based light-emitting devices are attracting more and more attention because of their potential applications in smart clothing, human-computer interfaces, safety warnings, entertainment fashion, etc. However, simple and efficient manufacturing of luminescent devices on fabrics even clothing with excellent stretchability and washability remains challenging. Here, a solvent-free thermal lamination process combined with laser engraving has been proposed to fabricate electroluminescent (EL) devices on textiles.

View Article and Find Full Text PDF

Under nutrient-poor conditions, animals must save energy by adjusting their behavior and physiology in order to survive. Although the impact of feeding state on olfactory sensory neuron activity has been well studied, the regulatory mechanisms underlying the transcriptional changes in odorant receptors (Ors) induced by feeding signals are seldom mentioned. Here, we showed that starvation could attenuate antennal responses of Bactrocera dorsalis toward multiple odorants, which could be reverted by sugar re-feeding, but not by a protein-rich diet.

View Article and Find Full Text PDF

Objectives: This study aimed to demonstrate the feasibility and safety of a novel twin-grasper assisted mucosal inverted closure (TAMIC) technique for large perforations after gastric endoscopic full-thickness resection (EFTR) in a porcine model.

Methods: Iatrogenic large perforations of the stomach were created and closed by an experienced endoscopist using the TAMIC technique in 12 pigs. Repeat gastroscopy was performed in 4 weeks after surgery to examine the wound sites and then the animals were killed.

View Article and Find Full Text PDF

Manufacturing cost is a major concern for electrochromic device (ECD) applications in smart windows for energy saving and low-carbon economy. Fully printing instead of a vacuum-based chemical vapor deposition (CVD) process is favored for large-scale fabrication of ECDs. To adapt to the screen printing process, a UV curable solid-state electrolyte based on lithium bis(trifluoromethane-sulfonyl) imide (LiTFSI) was specially formulated.

View Article and Find Full Text PDF

Printed metal nanogrid electrode exhibits superior characteristics for use in flexible organic solar cells (OSCs). However, the high surface roughness and inhomogeneity between grid and blank region is adverse for performance improvement. In this work, a thin amorphous indium tin oxide (ITO) film (α-ITO) is introduced to fill the blank and to improve the charge transporting.

View Article and Find Full Text PDF

Near-infrared (NIR) electrochromism is of academic and technological interest for a variety of applications in advanced solar heat regulation, photodynamic therapy, optical telecommunications, and military camouflage. However, inorganic materials with outstanding NIR modulation capability are quite few. Herein, we propose a promising strategy for achieving strong NIR electrochromism in tungsten oxide that is closely related to its electrochemical transformation from battery-type behavior to pseudocapacitance, induced by introducing an interlayer space with water molecules within tungsten oxide.

View Article and Find Full Text PDF

With the rapid progress of organic solar cells (OSCs), improvement in the efficiency of large-area flexible OSCs (>1 cm) is crucial for real applications. However, the development of the large-area flexible OSCs severely lags behind the growth of the small-area OSCs, with the electrical loss due to the large sheet resistance of the electrode being a main reason. Herein, a high conductive and high transparent Ag/Cu composite grid with sheet resistance <1 Ω sq and an average visible light transparency of 84% is produced as the transparent conducting electrode of flexible OSCs.

View Article and Find Full Text PDF

Flexible electronics, as a relatively new category of device, exhibit prodigious potential in many applications, especially in bio-integrated fields. It is critical to understand that thermal management of certain kinds of exothermic flexible electronics is a crucial issue, whether to avoid or to take advantage of the excessive temperature. A widely adaptable analytical method, validated by finite-element analysis and experiments, is conducted to investigate the thermal properties of exothermic flexible electronics with a heat source in complex shape or complex array layout.

View Article and Find Full Text PDF

Quantum dots light-emitting diodes (QLEDs) have attracted much interest owing to their compatibility with low-cost inkjet printing technology and potential for use in large-area full-color pixelated display. However, it is challenging to fabricate high efficiency inkjet-printed QLEDs because of the coffee ring effects and inferior resistance to solvents from the underlying polymer film during the inkjet printing process. In this study, a novel crosslinkable hole transport material, 4,4'-bis(3-vinyl-9H-carbazol-9-yl)-1,1'-biphenyl (CBP-V) which is small-molecule based, is synthesized and investigated for inkjet printing of QLEDs.

View Article and Find Full Text PDF

Background: Postoperative endophthalmitis after cataract surgery is a severe eye infection that can lead to irreversible blindness in the affected eye. The characteristics, treatment and prognosis of this disease vary because of its association with different pathogens. Here, we report what is possibly the first case of endophthalmitis after cataract surgery to be associated with the rare pathogen Earliella scabrosa.

View Article and Find Full Text PDF

Organic optoelectronic devices, especially for OLEDs, are extremely susceptibility to water vapor and oxygen which limit their widespread commercialization. In order to extend the shelf-lifetime of devices, thin film encapsulation is the most promising and challenging encapsulation process. In this study, dyad-style multilayer encapsulation structures based on alternating AlO layer and parylene C have been discussed as gas diffusion barriers, in which dense and pinhole-free AlO films were grown by atomic layer deposition (ALD) and flexible parylene C layers were deposited by chemical vapor deposition (CVD).

View Article and Find Full Text PDF

With the help of photonic sintering using intensive pulse light (IPL), copper has started to replace silver as a printable conductive material for printing electrodes in electronic circuits. However, to sinter copper ink, high energy IPL has to be used, which often causes electrode destruction, due to unreleased stress concentration and massive heat generated. In this study, a Cu/Sn hybrid ink has been developed by mixing Cu and Sn particles.

View Article and Find Full Text PDF

Metal-mesh is one of the contenders to replace indium tin oxide (ITO) as transparent conductive electrodes (TCEs) for optoelectronic applications. However, considerable surface roughness accompanying metal-mesh type of transparent electrodes has been the root cause of electrical short-circuiting for optoelectronic devices, such as organic light-emitting diode (OLED) and organic photovoltaic (OPV). In this work, a novel approach to making metal-mesh TCE has been proposed that is based on hybrid printing of silver (Ag) nanoparticle ink and electroplating of nickel (Ni).

View Article and Find Full Text PDF

Compared with traditional anti-tumor drugs, antimicrobial peptides as novel anti-tumor agents have prominent advantages of higher specificity and circumvention of multi-drug resistance. BP100 is a multifunctional membrane-active peptide with high antimicrobial activity. Taking BP100 as a lead peptide, we designed and synthesized a series of aliphatic chain-conjugated peptides through solid-phase synthesis.

View Article and Find Full Text PDF