The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants.
View Article and Find Full Text PDFThe adsorption of the surface-active protein hydrophobin, HFBII, and the competitive adsorption of HFBII with the cationic, anionic, and nonionic surfactants hexadecyltrimethylammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), has been studied using neutron reflectivity, NR. HFBII adsorbs strongly at the air-water interface to form a dense monolayer ∼30 Å thick, with a mean area per molecule of ∼400 Å(2) and a volume fraction of ∼0.7, for concentrations greater than 0.
View Article and Find Full Text PDFThe self-assembly of the protein hydrophobin, HFBII, and its self-assembly with cationic, anionic, and nonionic surfactants hexadecylterimethyl ammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), in aqueous solution have been studied by small-angle neutron scattering, SANS. HFBII self-assembles in solution as small globular aggregates, consistent with the formation of trimers or tetramers. Its self-assembly is not substantially affected by the pH or electrolytes.
View Article and Find Full Text PDF