In this article, we demonstrate single-layered, "microfluidic drifting" based three-dimensional (3D) hydrodynamic focusing devices with particle/cell focal positioning approaching submicron precision along both lateral and vertical directions. By systematically optimizing channel geometries and sample/sheath flow rates, a series of "microfluidic drifting" based 3D hydrodynamic focusing devices with different curvature angles are designed and fabricated. Their performances are then evaluated using confocal microscopy, fast camera imaging, and side-view imaging techniques.
View Article and Find Full Text PDFThe recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine.
View Article and Find Full Text PDFSince its inception, the discipline of microfluidics has been harnessed for innovations in the biomedicine/chemistry fields-and to great effect. This success has had the natural side-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes. But microfluidics has more to offer.
View Article and Find Full Text PDFCellular mechanical properties have been observed to have important implications for pathogenesis and pathophysiology. These observations have led to the recent development of a unique class of biomarkers: mechanical biomarkers. Compared with the traditional biochemical-based biomarkers (e.
View Article and Find Full Text PDFOn-chip manipulation of micro-objects has long been sought to facilitate fundamental biological studies and point-of-care diagnostic systems. In recent years, research on surface acoustic wave (SAW) based micro-object manipulation (i.e.
View Article and Find Full Text PDFMultifunctional Janus particles have a variety of applications in a wide range of fields. However, to achieve many of these applications, high-throughput, low-cost techniques are needed to synthesize these particles with precise control of the various structural/physical/chemical properties. Microfluidics provides a unique platform to fabricate Janus particles using carefully controlled liquid flow in microfluidic channels to form Janus droplets and various types of solidification methods to solidify them into Janus particles.
View Article and Find Full Text PDFIn this work, we demonstrate an integrated, single-layer, miniature flow cytometry device that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a "microfluidic drifting" based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.
View Article and Find Full Text PDFFor more than a decade, it has been expected that microfluidic technology would revolutionize the healthcare industry with simple, inexpensive, effective, and ubiquitous miniature diagnostic devices. To date, however, microfluidics has not yet been able to live up to these expectations. This fact has led to the recent development of new philosophies and methodologies for microfluidic diagnostics.
View Article and Find Full Text PDFWe have developed a planar, optofluidic Mach-Zehnder interferometer for the label-free detection of liquid samples. In contrast to most on-chip interferometers which require complex fabrication, our design was realized via a simple, single-layer soft lithography fabrication process. In addition, a single-wavelength laser source and a silicon photodetector were the only optical equipment used for data collection.
View Article and Find Full Text PDFWe have designed, demonstrated, and characterized a simple, novel in-plane tunable optofluidic microlens. The microlens is realized by utilizing the interface properties between two different fluids: CaCl(2)solution and air. A constant contact angle of ∼90° is the pivotal factor resulting in the outward bowing and convex shape of the CaCl(2) solution-air interface.
View Article and Find Full Text PDFWe report a two-dimensional (2D) tunable liquid gradient refractive index (L-GRIN) lens for variable focusing of light in the out-of-plane direction. This lens focuses a light beam through a liquid medium with a 2D hyperbolic secant (HS) refractive index gradient. The refractive index gradient is established in a microfluidic chamber through the diffusion between two fluids with different refractive indices, i.
View Article and Find Full Text PDFHere we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods.
View Article and Find Full Text PDFWe present ultra-fast homogeneous mixing inside a microfluidic channel via single-bubble-based acoustic streaming. The device operates by trapping an air bubble within a "horse-shoe" structure located between two laminar flows inside a microchannel. Acoustic waves excite the trapped air bubble at its resonance frequency, resulting in acoustic streaming, which disrupts the laminar flows and triggers the two fluids to mix.
View Article and Find Full Text PDFWe report a tunable optofluidic microlens configuration named the Liquid Gradient Refractive Index (L-GRIN) lens for focusing light within a microfluidic device. The focusing of light was achieved through the gradient refractive index (GRIN) within the liquid medium, rather than via curved refractive lens surfaces. The diffusion of solute (CaCl(2)) between side-by-side co-injected microfluidic laminar flows was utilized to establish a hyperbolic secant (HS) refractive index profile to focus light.
View Article and Find Full Text PDFIn this work, we demonstrate an on-chip microfluidic flow cytometry system based on a three-dimensional (3D) hydrodynamic focusing technique, microfluidic drifting. By inducing Dean flow in a curved microfluidic channel, microfluidic drifting can be used to hydrodynamically focus cells or particles in the vertical direction and enables the 3D hydrodynamic focusing in a single-layer planar microfluidic device. Through theoretical calculation, numerical simulation, and experimental characterization, we found that the microfluidic drifting technique can be effectively applied to three-dimensionally focus microparticles with density and size equivalent to those of human CD4+ T lymphocytes.
View Article and Find Full Text PDFWe introduce a novel on-chip microparticle focusing technique using standing surface acoustic waves (SSAW). Our method is simple, fast, dilution-free, and applicable to virtually any type of microparticle.
View Article and Find Full Text PDFIn this work, we report the design, fabrication, and characterization of a tunable optofluidic microlens that focuses light within a microfluidic device. The microlens is generated by the interface of two co-injected miscible fluids of different refractive indices, a 5 M CaCl(2) solution (n(D) = 1.445) and deionized (DI) water (n(D) = 1.
View Article and Find Full Text PDFWe introduce a novel fluid manipulation technique named "microfluidic drifting" to enable three-dimensional (3D) hydrodynamic focusing with a simple single-layer planar microfluidic device.
View Article and Find Full Text PDFA quartz crystal microbalance (QCM) DNA sensor, based on the nanoparticle amplification method, was developed for detection of Escherichia coli O157:H7. A thiolated single-stranded DNA (ssDNA) probe specific to E. coli O157:H7 eaeA gene was immobilized onto the QCM sensor surface through self-assembly.
View Article and Find Full Text PDF