During the lifetime of females, mammary epithelial cells undergo cyclical expansion and proliferation depending on the cyclical activation of mammary gland stem/progenitor cells (MaSCs) in response to the change of hormone level. The structural shrink of mammary duct tree and the functional loss of mammary gland occur along with inactivation of MaSCs in old females, even leading to breast cancer occasionally. However, the gene expression signature in MaSCs across the lifespan remains unclear.
View Article and Find Full Text PDFBiomed Pharmacother
December 2017
Colorectal cancer (CRC), the third most frequent occurred cancer, is associated with high mortality and extremely poor prognosis. Ginsenoside Rg3 (Rg3), one of the pharmacologically active components of traditional Chinese herbal medicine Panax ginseng, exerts antitumor effects against several types of cancer growth, including colorectal cancer. However, the detailed molecular mechanisms and particularly the signaling pathways that are decisive in this process are not yet fully elucidated.
View Article and Find Full Text PDFIodixanol is a non-ionic contrast medium for general vascular use. The most common adverse effects from iodixanol include skin rashes, hives, erythema, itching, and angioedema. To date, there have been no reports of delayed genital blisters of iodixanol.
View Article and Find Full Text PDFOur and other studies have reported that homocysteine thiolactone (HTL) could induce endothelial dysfunction. However, the precise mechanism was largely unknown. In this study, we tested the most possible factor-endoplasmic reticulum (ER) stress, which was demonstrated to be involved in endothelial dysfunction in cardiovascular disease.
View Article and Find Full Text PDFAlpha-lipoic acid (ALA), a naturally occurring compound, exerts powerful protective effects in numerous cardiovascular disease models. However, the pharmacological property of ALA on cardiac hypertrophy has not been well investigated. The present study was carried out to determine whether ALA exerts a direct anti-hypertrophic effect in cultured cardiomyocytes and whether it modifies the hypertrophic process in vivo.
View Article and Find Full Text PDFThe serine threonine kinase Akt1 has been implicated in the control of cellular metabolism, survival and growth. Herein, disruption of the ubiquitously expressed member of the Akt family of genes, Akt1, in the mouse, demonstrates a requirement for Akt1 in miRNA-mediated cellular apoptosis. The miR-17/20 cluster is known to inhibit breast cancer cellular proliferation through G1/S cell cycle arrest via binding to the cyclin D1 3'UTR.
View Article and Find Full Text PDFIncreased reactive oxygen species (ROS) such as superoxide have been implicated as causal elements of oncogenesis. A variety of cancers have displayed changes in steady-state levels of key antioxidant enzymes, with the mitochondrial form of superoxide dismutase (MnSOD) being commonly implicated. Increasing MnSOD expression suppresses the malignant phenotype in various cancer cell lines and suppresses tumor formation in xenograft and transgenic mouse models.
View Article and Find Full Text PDFUlcerative colitis (UC) is characterized by oxidative and nitrosative stress and neutrophil infiltration. In the present study, we aimed to investigate the therapeutic effect of ginsenoside Rd (GRd) in rats with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced recurrent UC. After UC was twice-induced by intracolonic injection of TNBS, rats were intragastrically administered different doses of GRd per day for 7 days.
View Article and Find Full Text PDFIn this study, we investigated the effects and the protective mechanism of ginsenoside Rd (GRd) which has been identified as one of the effective compounds from ginseng on relapsing colitis model induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats. After inducing relapsing colitis in experimental rats on two occasions by intracolonic injection of TNBS, GRd (10, 20 and 40 mg/kg) was administered to experimental colitis rats for 7 days. The inflammatory degree was assessed by macroscopic score, histology and myeloperoxidase (MPO) activity.
View Article and Find Full Text PDFThe aim of this study was to elucidate the molecular mechanisms involved in the therapeutic effects of proanthocyanidins from grape seeds (GSPE) on recurrent ulcerative colitis (UC) in rats. GSPE in doses of 100, 200, and 400mg/kg were intragastrically administered per day for 7 days after recurrent colitis was twice-induced by TNBS. The levels of GSH, as well as the activity of GSH-Px and SOD in colon tissues were measured by biochemical methods.
View Article and Find Full Text PDFTo elucidate the molecular mechanisms involved in the therapeutic effects of proanthocyanidins from grape seeds (GSPE), we explore whether GSPE regulates the inflammatory response of TNBS-induced colitis in rats at the levels of NF-κB signal transduction pathway. Rats were intragastrically administered of different doses of GSPE (100, 200 and 400 mg·kg-1) per day for seven days after ulcerative colitis (UC) was induced by intracolonic injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS) dissolved in 50% ethanol. Sulfasalazine (SASP) at 400 mg/kg was used as a positive control drug.
View Article and Find Full Text PDFCan J Physiol Pharmacol
September 2010
The aim of the present study was to investigate the therapeutic effect and mechanism of proanthocyanidins from grape seed (GSPE) in the treatment of recurrent ulcerative colitis (UC) in rats. To induce recurrent colitis, rats were instilled with 2,4,6-trinitrobenzenesulfonic acid (TNBS) (80 mg/kg) into the colon through the cannula in the first induced phase, and then the rats were instilled a second time with TNBS (30 mg/kg) into the colon on the sixteenth day after the first induction UC. Rats were intragastrically administered GSPE (200 mg/kg) per day for 7 days after twice-induced colitis by TNBS.
View Article and Find Full Text PDF