Publications by authors named "Xiaokun Huang"

Article Synopsis
  • * A total of 236 participants were involved, and five key predictors were identified: body mass index (BMI), diabetes, hiatal hernia, existing GERD, and triglyceride levels.
  • * The nomogram demonstrated moderate predictive accuracy, with ROC curve values of 0.779 for the training set and 0.796 for the validation set, making it useful for clinical application within certain risk thresholds.
View Article and Find Full Text PDF

Background & Aims: The benefit of postoperative adjuvant transcatheter arterial chemoembolization (pTACE) for patients with hepatocellular carcinoma (HCC), especially those with Child-Pugh (CP) B, remains controversial. This study aimed to assess the survival benefit of pTACE for HCC patients with CP B.

Methods: Data from 297 HCC patients with CP B7 or B8 were analyzed, dividing them into groups with and without pTACE (70, 23.

View Article and Find Full Text PDF

Background: The Naples Prognostic Score (NPS), integrating inflammatory and nutritional biomarkers, has been reported to be associated with the prognosis of various malignancies, but there is no report on intrahepatic cholangiocarcinoma (ICC). This study aimed to explore the prognostic value of NPS in patients with ICC.

Methods: Patients with ICC after hepatectomy were collected, and divided into three groups.

View Article and Find Full Text PDF

Background: Postoperative complications are vital factors affecting the prognosis of patients with hepatocellular carcinoma (HCC), especially for complex hepatectomy. The present study aimed to compare perioperative complications between laparoscopic and robotic complex hepatectomy (LCH vs. RCH).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of a three-dimensional (3D) printed dry-laboratory model on planning laparoscopic liver resection (LLR) for patients with complex hepatobiliary diseases.
  • Patients using the 3D model experienced significantly fewer complications, including lower rates of intraoperative blood loss and bile leakage, compared to those who relied on traditional imaging.
  • The findings suggest that 3D models are beneficial in reducing postoperative complications and can serve as a protective factor in surgical planning.
View Article and Find Full Text PDF

Background And Aims: The prognosis of patients with hepatocellular carcinoma (HCC) undergoing hepatectomy is unsatisfactory, especially for those with microvascular invasion (MVI). This study aimed to determine the impact of adjuvant transcatheter arterial chemoembolization (TACE) and Lenvatinib on the prognosis of patients with HCC and MVI after hepatectomy.

Methods: Patients diagnosed with HCC and MVI were reviewed, and stratified into four groups according to adjuvant TACE and/or Lenvatinib.

View Article and Find Full Text PDF

Ferrovalley materials hold great promise for implementation of logic and memory devices in valleytronics. However, there have so far been limited ferrovalley materials exhibiting significant valley polarization and high Curie temperature (). Using first-principles calculations, we predict that the TiTeBr monolayer is a promising ferrovalley candidate.

View Article and Find Full Text PDF

Background: Liver fibrosis is a predisposing factor for liver cancer. This study will investigate the predictive role of the Triglyceride-glucose and Gamma-glutamyl transferase index (TyG-GGT) as a non-invasive indicator of advanced liver fibrosis in individuals with obesity or overweight.

Method: We enrolled patients who underwent metabolic and bariatric surgery as well as intraoperative liver biopsies at Zhejiang provincial people's hospital from August 2020 to March 2023.

View Article and Find Full Text PDF

Several observational studies have reported an association between obesity and primary liver cancer (PLC), while the causality behind this association and the comparison of the risk effects of different obesity indicators on PLC remain unclear. In this study, we performed two-sample Mendelian randomization (MR) analyses to assess the associations of genetically determined liver fat, visceral adipose tissue (VAT), and body mass index (BMI) with the risk of PLC. The summary statistics of exposures were obtained from two genome-wide association studies (GWASs) based on the UK Biobank (UKB) imaging cohort and the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort.

View Article and Find Full Text PDF

Due to their potential application in spintronic devices, two-dimensional (2D) ferromagnetic materials are highly desired. We used first-principles calculations and Monte Carlo simulations to investigate the electronic structure and magnetic characteristics of the MnOCl monolayers. We discovered two stable monolayer structures, -MnOCl and -MnOCl.

View Article and Find Full Text PDF

Sphingolipids are a class of bioactive complex lipids that have been closely associated with aging and aging-related diseases. However, the mechanism through which sphingolipids control aging has long been a mystery. Emerging studies reveal that sphingolipids exert tight control over lysosomal homeostasis and function, as evidenced by sphingolipid-related diseases, including but not limited to lysosomal storage disorders.

View Article and Find Full Text PDF

Two-dimensional (2D) materials with intrinsic ferromagnetism and piezoelectricity have received growing attention due to their potential applications in nanoscale spintronic devices. However, their applications are highly limited by the low Curie temperatures () and small piezoelectric coefficients. Here, using first-principles calculations, we have successfully predicted that BiCrX (X = S, Se, and Te) monolayers simultaneously possess ferromagnetism and piezoelectricity by replacing one layer of Bi atoms with Cr atoms in BiX monolayers.

View Article and Find Full Text PDF

Environmentally friendly lead-free piezoelectric materials have been attracting significant attention in recent years. NaBiTiO-based relaxor ferroelectrics have found acceptance for application in promising lead-free transducers in high-power ultrasonic devices. However, their low thermal stability, i.

View Article and Find Full Text PDF

Purpose: Recently, two-dimensional-to-three-dimensional (2D-3D) deformable registration has been applied to deform liver tumor contours from prior reference images onto estimated cone-beam computed tomography (CBCT) target images to automate on-board tumor localizations. Biomechanical modeling has also been introduced to fine-tune the intra-liver deformation-vector-fields (DVFs) solved by 2D-3D deformable registration, especially at low-contrast regions, using tissue elasticity information and liver boundary DVFs. However, the caudal liver boundary shows low contrast from surrounding tissues in the cone-beam projections, which degrades the accuracy of the intensity-based 2D-3D deformable registration there and results in less accurate boundary conditions for biomechanical modeling.

View Article and Find Full Text PDF

The relaxation of high-energy "hot" carriers in semiconductors is known to involve the redistribution of energy between hot and cold carriers, as well as the transfer of energy from hot carriers to phonons. Over the past few years, these two processes have been identified in lead-halide perovskites (LHPs) using ultrafast pump-probe experiments, but their interplay is not fully understood. Here we present a practical and intuitive kinetic model that accounts for the effects of both hot and cold carriers on carrier relaxation in LHPs.

View Article and Find Full Text PDF

Background: Triple-energy computed tomography (TECT) can obtain x-ray attenuation measurements at three energy spectra, thereby allowing identification of different material compositions with same or very similar attenuation coefficients. This ability is known as material decomposition, which can decompose TECT images into different basis material image. However, the basis material image would be severely degraded when material decomposition is directly performed on the noisy TECT measurements using a matrix inversion method.

View Article and Find Full Text PDF

Purpose: For four-dimensional cone-beam computed tomography (4D-CBCT), its image quality is usually degraded by insufficient projections at each respiratory phase after phase-sorting. Recently, we developed a simultaneous motion estimation and image reconstruction (SMEIR) technique, which can improve lung 4D-CBCT reconstruction quality by incorporating an interphase motion model generated as deformation vector fields (DVFs). Simultaneous motion estimation and image reconstruction uses an intensity-driven two-dimensional (2D)-three-dimensional (3D) deformation technique to estimate these DVFs by intensity-matching 2D projections.

View Article and Find Full Text PDF

Carrier cooling is of widespread interest in the field of semiconductor science. It is linked to carrier-carrier and carrier-phonon coupling and has profound implications for the photovoltaic performance of materials. Recent transient optical studies have shown that a high carrier density in lead-halide perovskites (LHPs) can reduce the cooling rate through a "phonon bottleneck".

View Article and Find Full Text PDF

Background: Pre-treatment liver tumor localization remains a challenging task for radiation therapy, mostly due to the limited tumor contrast against normal liver tissues, and the respiration-induced liver tumor motion. Recently, we developed a biomechanical modeling-based, deformation-driven cone-beam CT estimation technique (Bio-CBCT), which achieved substantially improved accuracy on low-contrast liver tumor localization. However, the accuracy of Bio-CBCT is still affected by the limited tissue contrast around the caudal liver boundary, which reduces the accuracy of the boundary condition that is fed into the biomechanical modeling process.

View Article and Find Full Text PDF

4-Dimensional cone-beam computed tomography (4D-CBCT) offers several key advantages over conventional 3D-CBCT in moving target localization/delineation, structure de-blurring, target motion tracking, treatment dose accumulation and adaptive radiation therapy. However, the use of the 4D-CBCT in current radiation therapy practices has been limited, mostly due to its sub-optimal image quality from limited angular sampling of cone-beam projections. In this study, we summarized the recent developments of 4D-CBCT reconstruction techniques for image quality improvement, and introduced our developments of a new 4D-CBCT reconstruction technique which features simultaneous motion estimation and image reconstruction (SMEIR).

View Article and Find Full Text PDF

Purpose: To improve the accuracy of liver tumor localization, this study tests a biomechanical modeling-guided liver cone-beam CT (CBCT) estimation (Bio-CBCT-est) technique, which generates new CBCTs by deforming a prior high-quality CT or CBCT image using deformation vector fields (DVFs). The DVFs can be used to propagate tumor contours from the prior image to new CBCTs for automatic 4D tumor localization.

Methods/materials: To solve the DVFs, the Bio-CBCT-est technique employs an iterative scheme that alternates between intensity-driven 2D-3D deformation and biomechanical modeling-guided DVF regularization and optimization.

View Article and Find Full Text PDF

Four-dimensional (4D) x-ray cone-beam computed tomography (CBCT) is important for a precise radiation therapy for lung cancer. Due to the repeated use and 4D acquisition over a course of radiotherapy, the radiation dose becomes a concern. Meanwhile, the scatter contamination in CBCT deteriorates image quality for treatment tasks.

View Article and Find Full Text PDF

Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model.

View Article and Find Full Text PDF

The misfit layered BiACoO (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A's ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO plane when ionic radius increases from Ca to Ba.

View Article and Find Full Text PDF