Publications by authors named "Xiaoke Nie"

In understanding the mechanism of aggregation-induced emission (AIE), the multilevel ONIOM framework has been demonstrated as one of the efficient tools that can capture the essential mechanistic information by choosing a single fluorophore as the quantum mechanics (QM) model and putting all surrounding molecules in the low-level region. Recently, the ionic styryl-pyridine salt (namely, SPH) has been reported as a new class of AIEgen with a high fluorescence yield. In the SPH crystal, a pair of ionic SPH molecules are closely stacked with each other in an antiparallel, head-to-tail pattern, thus the choice of QM models (an individual or dimeric structure) becomes critical in the ONIOM study.

View Article and Find Full Text PDF

Perfluorooctanesulfonate (PFOS) may cause neurotoxicity through the initiation of oxidative stress. In the current study, we investigated the role of anti-oxidant nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in PFOS-induced neurotoxicity. We found that human neuroblastoma SH-SY5Y cells exhibited significant apoptotic cell death following PFOS exposure, and this process was accompanied with apparent accumulation of reactive oxidative species (ROS).

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS) is a persistent and bioaccumulative compound that has been widely used in various fields of life and industrial productions, because of its special chemical and physical properties. Numerous studies have indicated significant neurotoxic effect of PFOS, especially on neurons and microglia. However, the influence of PFOS on astrocyte physiology remains unclear.

View Article and Find Full Text PDF

Perfluorooctanesulfonate (PFOS)-containing compounds are widely used in all aspects of industrial and consumer products. Recent studies indicated that PFOS is ubiquitous in environments and is considered to be a new type of persistent organic pollutant (POP). This has raised concerns regarding its adverse effects on human health.

View Article and Find Full Text PDF

Manganese (Mn) is a widely distributed trace element that is essential for normal brain function and development. However, chronic exposure to excessive Mn has been known to lead to neuronal loss and manganism, a disease with debilitating motor and cognitive deficits, whose clinical syndrome resembling idiopathic Parkinson's disease (IPD). However, the precise molecular mechanism underlying Mn neurotoxicity remains largely unclear.

View Article and Find Full Text PDF

Arsenic is a widely distributed toxic metalloid in around the world. Inorganic arsenic species are deemed to affect astrocytes functions and to cause neuron apoptosis. Microglia are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), the most extensively studied member of perfluoroalkyl and polyfluoroalkyl substances (PFASs), has been thought to be toxic to the central nervous system (CNS) of mammals. However, the neurotoxic effects of PFOS remain largely unknown. In this study, the effect of PFOS on microglial apoptosis was examined.

View Article and Find Full Text PDF

Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity.

View Article and Find Full Text PDF

The neurotoxic effects of perfluorooctane sulfonate (PFOS) have attracted significant research attention in recent years. In the present study, we investigated the impact of PFOS exposure on the physiology of neural stem cells (NSCs) in vitro. We showed that PFOS exposure markedly attenuated the proliferation of C17.

View Article and Find Full Text PDF

Glyoxylate reductase/hydroxypyruvate reductase (GRHPR), which exists mainly in the liver, is a D-2-hydroxy-acid dehydrogenase that plays a critical role in the formation of primary hyperoxaluria type 2 (PH2). Here, we investigated GRHPR expression and its potential role in both human Crohn's disease (CD) and experimental colitis. Murine experimental colitis models were established by administration of trinitrobenzenesulphonic acid (TNBS).

View Article and Find Full Text PDF

The widespread environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is considered one of the most toxic dioxin-like compounds. Although epidemiological studies have shown that TCDD exposure is linked to some neurological and neurophysiological disorders, the underlying mechanism of TCDD-mediated neurotoxicity has remained unclear. Astrocytes are the most abundant cells in the nervous systems, and are recognized as the important mediators of normal brain functions as well as neurological, neurodevelopmental and neurodegenerative brain diseases.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases.

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS), a ubiquitous pollutant widely found in the environment and biota, can cause numerous adverse effects on human health. In recent years, PFOS's toxic effects on the central nervous system (CNS) have been shown. However, we still have a lot to study in the underlying molecular mechanism of PFOS's neurotoxicity.

View Article and Find Full Text PDF

Elevated free fatty acids (FFAs) are fundamental to the pathogenesis of hepatic insulin resistance. However, the molecular mechanisms of insulin resistance remain not completely understood. Transcriptional dysregulation, post-transcriptional modifications and protein degradation contribute to the pathogenesis of insulin resistance.

View Article and Find Full Text PDF

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been recently shown to elicit inflammatory response in a number of cell-types. However, whether TCDD could provoke inflammation in astrocytes, the most abundant glial cells in central nervous system (CNS), remains virtually unknown. In the present study, we showed that TCDD exposure could induce evident astrocyte activation both in vivo and in vitro.

View Article and Find Full Text PDF

Zinc is an essential nutrient that is important for normal brain development. Zinc deficiency has been linked to aberrant neurological development and functioning. However, the molecular mechanisms underlying Zinc deficiency-induced neurological disorders remain largely elusive.

View Article and Find Full Text PDF

The environmental toxicant TCDD may elicit cytotoxic effects by inducing reactive oxygen species (ROS) generation. Autophagy is one of the first lines of defense against oxidative stress damage. Herein, we investigated whether autophagy played a regulatory role in TCDD-induced neurotoxicity.

View Article and Find Full Text PDF

Excess serum free fatty acids (FFAs) are fundamental to the pathogenesis of insulin resistance. Chronic endoplasmic reticulum (ER) stress is a major contributor to obesity-induced insulin resistance in the liver. With high-fat feeding (HFD), FFAs can activate chronic endoplasmic reticulum (ER) stress in target tissues, initiating negative crosstalk between FFAs and insulin signaling.

View Article and Find Full Text PDF

Chronic exposure to excessive manganese (Mn) has been known to lead to neuronal loss and a clinical syndrome resembling idiopathic Parkinson's disease (IPD). p53 plays an integral role in the development of various human diseases, including neurodegenerative disorders. However, the role of p53 in Mn-induced neuronal apoptosis and neurological deficits remains obscure.

View Article and Find Full Text PDF

RNA-binding motif protein, X-linked (RBMX) is a 43 kDa nuclear protein in the RBM family and functions on alternative splicing of RNA. The gene encoding RBMX is located on chromosome Xq26. To investigate whether RBMX is involved in retinal neuron apoptosis, we performed a light-induced retinal damage model in adult rats.

View Article and Find Full Text PDF

2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD-mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms.

View Article and Find Full Text PDF

Histone deacetylase 4 (HDAC4), a member of the class IIa HDACs subfamily, has emerged as a critical regulator of cell growth, differentiation, and migration in various cell types. It was reported that HDAC4 stimulated colon cell proliferation via repression of p21. Also, HDAC4 contributes to platelet-derived growth factor-BB-induced proliferation and migration of vascular smooth muscle cells.

View Article and Find Full Text PDF

Manganese (Mn) is an essential micronutrient. However, exposure to high doses of Mn may lead to a neurological disease known as manganism, which is characterized by marked brain neuronal loss. K-homology splicing regulator protein (KHSRP) is a multifunctional RNA-binding protein and has been implicated in the regulation of multiple cellular signaling associated with neuronal apoptosis and survival, such as p38 mitogen-activated protein kinase (MAPK), nuclear factor kappaB (NF-κB), and Wnt/β-catenin pathways.

View Article and Find Full Text PDF

SYF2 is a putative homolog of human p29 in Saccharomyces cerevisiae. It seems to be involved in pre-mRNA splicing and cell cycle progression. Disruption of SYF2 leads to reduced α-tubulin expression and delayed nerve system development in zebrafish.

View Article and Find Full Text PDF

Studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces apoptotic cell death in neuronal cells. However, whether this is the result of endoplasmic reticulum (ER) stress-mediated apoptosis remains unknown. In this study, we determined whether ER stress plays a role in the TCDD-induced apoptosis of pheochromocytoma (PC12) cells and primary neurons.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2itcvnjctfos8v7jfkutss15i8c8oal6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once