Publications by authors named "Xiaokang Yao"

Visible-light-excited ultralong organic phosphorescence (UOP) materials hold significant potential for various practical applications. Red-shifted excitation wavelength can be achieved by introducing large π-conjugation structures into organic molecules, thereby increasing intermolecular interactions and coupling. However, generating visible-light-excited UOP from isolated molecules poses a great challenge.

View Article and Find Full Text PDF

Stimuli-responsive ultralong organic phosphorescence (UOP) materials that in response to external factors such as light, heat, and atmosphere have raised a tremendous research interest in fields of optoelectronics, anticounterfeiting labeling, biosensing, and bioimaging. However, for practical applications in life and health fields, some fundamental requirements such as biocompatibility and biodegradability are still challenging for conventional inorganic and aromatic-based stimuli-responsive UOP systems. Herein, an edible excipient, sodium carboxymethyl cellulose (SCC), of which UOP properties exhibit intrinsically multistimuli responses to excited wavelength, pressure, and moisture, is reported.

View Article and Find Full Text PDF

Luminescent materials with narrowband emission show great potential for diverse applications in optoelectronics. Purely organic phosphors with room-temperature phosphorescence (RTP) have made significant success in rationally manipulating quantum efficiency, lifetimes, and colour gamut in the past years, but there is limited attention on the purity of the RTP colours. Herein we report a series of closed-loop molecules with narrowband phosphorescence by multiple resonance effect, which significantly improves the colour purity of RTP.

View Article and Find Full Text PDF

Phosphorescence is ubiquitous in heavy atom-containing organic phosphors, which attracts considerable attention in optoelectronics and bioelectronics. However, heavy atom-free organic materials with efficient phosphorescence are rare under ambient conditions. Herein, we report a series of adaptive host-guest materials derived from dibenzo-heterocyclic analogues, showing host-dependent color-tunable phosphorescence with phosphorescence efficiency of up to 98.

View Article and Find Full Text PDF

Dynamic luminescence behavior by external stimuli, such as light, thermal field, electricity, mechanical force, etc., endows the materials with great promise in optoelectronic applications. Upon thermal stimulus, the emission is inevitably quenched due to intensive non-radiative transition, especially for phosphorescence at high temperature.

View Article and Find Full Text PDF

Repairing infected bone defects remains a severe challenge due to antibiotic abuse and recurrence. Hence, we modified magnetocaloric FeO nanoparticles and added them to magnesium calcium phosphate bone cement (MCPC) to fabricate multifunctional magnetic composites for sequential bacterial inhibition, angiogenesis and osteogenesis. Nevertheless, high doses of Mg ions and Fe ions were released from MCPC, which adversely affected osteogenesis.

View Article and Find Full Text PDF

Achieving multicolor organic afterglow materials with narrowband emission and high color purity is important in various optoelectronic fields but remains a great challenge. Here, an efficient strategy is presented to obtain narrowband organic afterglow materials via Förster resonance energy transfer from long-lived phosphorescence donors to narrowband fluorescence acceptors in a polyvinyl alcohol matrix. The resulting materials exhibit narrowband emission with a full width at half maximum (FWHM) as small as 23 nm and the longest lifetime of 721.

View Article and Find Full Text PDF

Organic scintillators, materials with the ability to exhibit luminescence when exposed to X-rays, have aroused increasing interest in recent years. However, the enhancement of radioluminescence and improving X-ray absorption of organic scintillators lie in the inherent dilemma, due to the waste of triplet excitons and weak X-ray absorption during scintillation. Here, we employ halogenated thermally activated delayed fluorescence materials to improve the triplet exciton utilization and X-ray absorption simultaneously, generating efficient scintillation with a low detection limit, which is one order of magnitude lower than the dosage for X-ray medical diagnostics.

View Article and Find Full Text PDF

As the core component of the power system, the accurate analysis of its state and fault type is very important for the maintenance and repair of the transformer. The detection method represented by the transformer oil dissolved gas has the disadvantages of complicated processing steps and high operation requirements. Here, laser induced fluorescence (LIF) spectroscopy was applied for the analysis of transformer oil.

View Article and Find Full Text PDF

We present a novel series of neutral photo-acid generators (PAGs) based on carbazole derivatives. A photo-induced 6π-electrocyclization reaction of carbazole derivatives triggers the subsequent release of halogen acids. With UV irradiation, PAGs spontaneously release acid molecules quantitatively forming polyaromatic compounds.

View Article and Find Full Text PDF

X-ray-induced photodynamic therapy utilizes penetrating X-rays to activate reactive oxygen species in deep tissues for cancer treatment, which combines the advantages of photodynamic therapy and radiotherapy. Conventional therapy usually requires heavy-metal-containing inorganic scintillators and organic photosensitizers to generate singlet oxygen. Here, we report a more convenient strategy for X-ray-induced photodynamic therapy based on a class of organic phosphorescence nanoscintillators, that act in a dual capacity as scintillators and photosensitizers.

View Article and Find Full Text PDF

Intermolecular interactions, including attractive and repulsive interactions, play a vital role in manipulating functionalization of the materials from micro to macro dimensions. Despite great success in generation of ultralong organic phosphorescence (UOP) by suppressing non-radiative transitions through attractive interactions recently, there is still no consideration of repulsive interactions on UOP. Herein, we proposed a feasible approach by introducing carboxyl groups into organic phosphors, enabling formation of the intense repulsive interactions between the isolated molecules and the matrix in rigid environment.

View Article and Find Full Text PDF

Interfaces between complex oxides provide a unique opportunity to discover novel interfacial physics and functionalities. Here, we fabricate the multilayers of itinerant ferromagnet SrRuO (SRO) and multiferroic BiFeO (BFO) with atomically sharp interfaces. Atomically resolved transmission electron microscopy reveals that a large ionic displacement in BFO can penetrate into SRO layers near the BFO/SRO interfaces to a depth of 2-3 unit cells, indicating the ferroelectric proximity effect.

View Article and Find Full Text PDF

Ultralong organic phosphorescence (UOP) has aroused enormous interest in recent years. UOP materials are mainly limited to crystals or rigid host-guest systems. Their poor processability and mechanical properties critically hamper practical applications.

View Article and Find Full Text PDF

High-efficiency blue phosphorescence emission is essential for organic optoelectronic applications. However, synthesizing heavy-atom-free organic systems having high triplet energy levels and suppressed non-radiative transitions-key requirements for efficient blue phosphorescence-has proved difficult. Here we demonstrate a simple chemical strategy for achieving high-performance blue phosphors, based on confining isolated chromophores in ionic crystals.

View Article and Find Full Text PDF

Amorphous purely organic phosphorescence materials with long-lived and color-tunable emission are rare. Herein, we report a concise chemical ionization strategy to endow conventional poly(4-vinylpyridine) (PVP) derivatives with ultralong organic phosphorescence (UOP) under ambient conditions. After the ionization of 1,4-butanesultone, the resulting PVP-S phosphor showed a UOP lifetime of 578.

View Article and Find Full Text PDF

Exploring and manipulating domain configurations in ferroelectric thin films are of critical importance for the design and fabrication of ferroelectric heterostructures with a novel functional performance. In this study, BiFeO (BFO) ultrathin films with various Bi/Fe ratios from excess Bi to deficient Bi have been grown on (LaSr)MnO (LSMO)-covered SrTiO substrates by a laser molecular beam epitaxy system. Atomic force microscopy and piezoresponse force microscopy measurements show that both the surface morphology and ferroelectric polarization of the films are relevant to Bi nonstoichiometry.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) is a key enzyme which present in the central nervous system of living organisms. Organophosphorus pesticides (OPs) that serve as insecticides are AChE inhibitors which have been used widely in agriculture. A series of novel OPs containing pyrazole moiety have been designed and synthesized.

View Article and Find Full Text PDF

Mitogen activated protein kinase (MAPK) signal transduction pathway has been proved to play an important role in tumorigenesis and cancer development. MEK inhibitor has been demonstrated significant clinical benefit for blocking MAPK pathway activation and possibly could block reactivation of the MAPK pathway at the time of BRAF inhibitor resistance. Twenty N-(benzyloxy)-1,3-diphenyl-1H-pyrazole-4-carboxamide derivatives have been designed and synthesized as MEK inhibitors, and their biological activities were evaluated.

View Article and Find Full Text PDF