Publications by authors named "Xiaokang Ding"

Article Synopsis
  • Flexible supercapacitors are highly sought after for their great power density and stability, with TiCT MXene being a notable material due to its metallic conductivity but limited performance in energy storage.
  • A new MnSe@TiCT heterostructure is developed, significantly improving supercapacitor performance, achieving a specific capacitance of 721.4 F/g, about ten times that of pure TiCT.
  • This supercapacitor also demonstrates a wide voltage window of 1.2 V and retains 90.77% capacitance after 4000 cycles, making it suitable for powering flexible wearable electronics, even when bent at 90°.
View Article and Find Full Text PDF

Electrodynamic therapy (EDT) is a promising alternative approach for antibacterial therapy, as reactive oxygen species (ROS) are produced efficiently in response to an electric field without relying on endogenous HO and O. However, the inherent toxicity of metallic catalysts and numerous bacterial toxins during the therapeutic process still hinder its development. Herein, biomimetic metal-organic (MOF@EV) nanosponges composed of ginger-derived extracellular vesicles (EVs), and electrodynamic metal-organic frameworks (MOFs) are developed for the eradication of bacterial infections and the absorption of toxins.

View Article and Find Full Text PDF

Chronic diabetic wounds are difficult to treat due to imbalanced inflammatory responses, high blood glucose levels, and bacterial infections. Novel therapeutic approaches based on nucleic acid analogues have been proposed, with unique advantages in improving angiogenesis, increasing collagen synthesis, and exerting anti-inflammatory effects. However, the inherent electronegativity of nucleic acids makes them less susceptible to cellular uptake.

View Article and Find Full Text PDF

The combination of nanoparticles and tumor-targeting bacteria for cancer immunotherapy can overcome the shortcomings of poor nanoparticle accumulation, limited penetration, and restricted distribution. However, it remains a great challenge for the hybrid system to improve therapeutic efficacy through the simultaneous and controllable regulation of immune cells and tumor cells. Herein, a hybrid therapeutic platform is rationally designed to achieve immune cascade-augmented cancer immunotherapy.

View Article and Find Full Text PDF

Jaw cyst is a fluid-containing cystic lesion that can occur in any part of the jaw and cause facial swelling, dental lesions, jaw fractures, and other associated issues. Due to the diversity and complexity of jaw images, existing deep-learning methods still have challenges in segmentation. To this end, we propose MARes-Net, an innovative multi-scale attentional residual network architecture.

View Article and Find Full Text PDF

Hydrogels are commonly used as wound dressings to help maintain a moist environment around the wound and isolate contaminants, thus promoting healing. For irregular wounds, the slow healing process and even infection may occur due to the inability of dressings to adhere well to the wound. Prussian blue (PB) is a metal-organic framework (MOF) material with excellent photothermal conversion and superior stability.

View Article and Find Full Text PDF

Chirality is ubiquitous in nature, and closely related to biological phenomena. Nature-originated nanomaterials such as cellulose nanocrystals (CNCs) are able to self-assemble into hierarchical chiral nematic CNC films and impart handedness to nano and micro scale. However, the effects of the chiral nematic surfaces on cell adhesion are still unknown.

View Article and Find Full Text PDF

Bi-Sb-Te-based thermoelectric materials have the best room-temperature thermoelectric properties, but their inherent brittleness and rigidity limit their application in the wearable field. In this study, W-doped -type BiSbTe (W-BST) thin films were prepared using magnetron sputtering on polyimide substrates to create thermoelectric generators (TEGs). Bending tests showed that the thin film has excellent flexibility and mechanical durability, meeting the flexible requirements of wearable devices.

View Article and Find Full Text PDF

Apart from single hemostasis, antibacterial and other functionalities are also desirable for hemostatic materials to meet clinical needs. Cationic materials have attracted great interest for antibacterial/hemostatic applications, and it is still desirable to explore rational structure design to address the challenges in balanced hemostatic/antibacterial/biocompatible properties. In this work, a series of cationic microspheres (QMS) were prepared by the facile surface modification of microporous starch microspheres with a cationic tannic acid derivate, the coating contents of which were adopted for the first optimization of surface structure and property.

View Article and Find Full Text PDF

Pelvic organ prolapse (POP) has a high incidence rate among Chinese women. Repeated mechanical stimulation is an important factor causing POP, but the injury mechanism has not yet been elucidated. The purpose of this study is to explore the related mechanisms of pelvic floor supporting tissue damage caused by mechanical force and the application of stem cell therapy.

View Article and Find Full Text PDF

In-depth understanding of the mechanisms underlying the adhesion of myocardial cells holds significant importance for the development of effective therapeutic biomaterials aimed at repairing damaged or pathological myocardial tissues. Herein, we present evidence that myocardial cells (H9C2) exhibit integrin-based mechanosensing during the initial stage of adhesion (within the first 2 h), enabling them to recognize and respond to variations in substrate stiffnesses. Moreover, the bioinformatics analysis of RNA transcriptome sequencing (RNA-seq) reveals that the gene expressions associated with initial stage focal adhesion (Ctgf, Cyr61, Amotl2, Prickle1, Serpine1, Akap12, Hbegf, and Nedd9) are up-regulated on substrates with elevated Young's modulus.

View Article and Find Full Text PDF

Safe and efficient antibacterial materials are urgently needed to combat drug-resistant bacteria and biofilm-associated infections. The rational design of nanoparticles for flexible elimination of biofilms remains challenging. Herein, we propose the fabrication of Janus-structured nanoparticles targeting extracellular polymeric substance to achieve dispersion or near-infrared (NIR) light-activated photothermal elimination of drug-resistant biofilms, respectively.

View Article and Find Full Text PDF

In this letter, a sub-pm linewidth, high pulse energy and high beam quality microsecond-pulse 766.699 nm Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. At an incident pump energy of 824 mJ, the maximum output energy of 132.

View Article and Find Full Text PDF

The fact that multidrug resistance (MDR) could induce medical device-related infections, along with the invalidation of traditional antibiotics has become an intractable global medical issue. Therefore, there is a pressing need for innovative strategies of antibacterial functionalization of medical devices. For this purpose, a multimodal antibacterial coating that combines photothermal and photodynamic therapies (PTT/PDT) is developed here based on novel heavy atom-free photosensitizer compound, BDP-6 (a kind of boron-dipyrromethene).

View Article and Find Full Text PDF

Nanovaccines have attracted intense interests for efficient antigen delivery and tumor-specific immunity. It is challenging to develop a more efficient and personalized nanovaccine to maximize all steps of the vaccination cascade by exploiting the intrinsic properties of nanoparticles. Here, biodegradable nanohybrids (MP) composed of manganese oxide nanoparticles and cationic polymers are synthesized to load a model antigen ovalbumin to form MPO nanovaccines.

View Article and Find Full Text PDF

Herein, we report a facile approach for the preparation of two-dimensional iodine nanosheets (2D iodine NSs) with good stability and high biocompatibility an aqueous solvent-assisted ultrasonic route. Due to the large specific surface area of the 2D morphology, iodine NSs effectively interact with bacterial membranes and destroy bacterial integrity, as well as further damaging intracellular DNA, showing prominent antibacterial activity against and .

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a light triggered therapy by producing reactive oxygen species (ROS), but traditional PDT may suffer from the real-time illumination that reduces the compliance of treatment and cause phototoxicity. A supramolecular photoactive G-quartet based material is reported, which is self-assembled from guanosine (G) and 4-formylphenylboronic acid/1,8-diaminooctane, with incorporation of riboflavin as a photocatalyst to the G4 nanowire, for post-irradiation photodynamic antibacterial therapy. The G4-materials, which exhibit hydrogel-like properties, provide a scaffold for loading riboflavin, and the reductant guanosine for the riboflavin for phototriggered production of the therapeutic H O .

View Article and Find Full Text PDF

The rise of drug-resistant bacteria (e.g., methicillin-resistant , MRSA) has continued, making the ″super-bugs″ a formidable threat to global health.

View Article and Find Full Text PDF

Blood-contacting catheters occupy a vital position in modern clinical treatment including but not limited to cardiovascular diseases, but catheter-related thrombosis associated with high morbidity and mortality remains a major health concern. Hence, there is an urgent need for functionalized catheter surfaces with superior hemocompatibility that prevent protein adsorption and thrombus formation. In this work, we developed a strategy for constructing a kind of polyphenol-amine coating on the TPU surface (TLA) with tannic acid and lysine simple dip-coating, inspired by dopamine adhesion.

View Article and Find Full Text PDF

Wearable pressure sensors are highly desirable for monitoring human health and realizing a nice human-machine interaction. Herein, a chitosan/MXene/polyurethane-sponge/polyvinyl alcohol (CS/MXene/PU sponge/PVA)-based 3D pressure sensor is developed to simultaneously achieve wearability, washability, and high sensitivity in a wide region. In the force-sensitive layer of the sensor, MXene and CS are fully attached to the PU sponge to ensure that the composite sponge has remarkable conductivity and washability.

View Article and Find Full Text PDF

The unsymmetrical morphology and unique properties of Janus nanoparticles (JNPs) provide superior performances for biomedical applications. In this work, a general and facile strategy is developed to construct a series of symmetrical and unsymmetrical chitosan/gold nanoparticles. Taking advantage of the active motion derived from Janus structure, selective surface functionalization of polysaccharide domain, and photothermal effect of gold nanorods, Janus chitosan/gold nanoparticles (J-Au-CS) are selected as a model system to construct Janus-structured chitosan/gold nanohybrids (J-ACP).

View Article and Find Full Text PDF

Implantable medical devices are widely used, but biomaterial-associated infections (BAIs) impose a huge economic burden and increase the mortality of patients. Therefore, BAIs are a serious concern that must be urgently resolved. Materials with antibacterial properties have become hotspots of current research and development.

View Article and Find Full Text PDF

It is very desirable to develop advanced sustainable biomedical materials with superior biosafety and bioactivity for clinical applications. Herein, biomass-derived multilayer-structured absorbable microparticles (MQ T ) composed of starches and plant polyphenols are readily constructed for the safe and effective treatment of bone defects with intractable bleeding by coating multiple layers of quaternized starch (Q) and tannic acid onto microporous starch microparticles via facile layer-by-layer assembly. MQ T microparticles exhibit efficient degradability, low cytotoxicity, and good blood compatibility.

View Article and Find Full Text PDF

Cationic agents, such as ionic liquids (ILs)-based species, have broad-spectrum antibacterial activities. However, the antibacterial mechanisms lack systematic and molecular-level research, especially for Gram-negative bacteria, which have highly organized membrane structures. Here, we designed a series of flexible fluorescent diketopyrrolopyrrole-based ionic liquid derivatives (ILDs) with various molecular sizes (1.

View Article and Find Full Text PDF

Fused deposition modelling (FDM) is a commonly used 3D printing technology. The development of FDM materials was essential for the product quality of FDM. In this work, a series of polycaprolactone (PCL)-based composites for low-temperature FDM were developed.

View Article and Find Full Text PDF