Publications by authors named "Xiaokan Yu"

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are essential oxidative metabolites of organisms, which are closely related to physiological, pathological and pharmacological processes. The accurate detection of ROS/RNS is important for the understanding of biological processes, monitoring of pharmacological effects, and predicting the course of disease. The recently developed NIR nanoprobes based on upconversion nanoparticles (UCNPs) hold great prospects in sensitive and deep-tissue detection of ROS/RNS, and considerable progress has been achieved so far.

View Article and Find Full Text PDF

Nine kinds of carbon dots (CDs) were synthesized by using fruits with different varieties as carbon sources; meanwhile, the fluorescence characteristics, quantum yield, and response ability to different metal ions and free radicals were systematically studied. These CDs showed similar excitation and emission spectral ranges (λ ≈ 345 nm, λ ≈ 435 nm), but very different fluorescence quantum yield (QY), in which orange and cantaloupe CDs have the highest QY around 0.25 and green plum CDs showed the lowest quantum yield around 0.

View Article and Find Full Text PDF

Fluorescent probes based on fluorescence resonance energy transfer (FRET) are highly promising for diverse bioapplications. The key to constructing FRET probes is to confine the donor and acceptor within a sufficiently close distance. However, the commonly used covalent linkage often requires elaborate design and complex organic synthesis, and sometimes causes changes in the fluorescence properties of the donor and acceptor.

View Article and Find Full Text PDF

As one of the nanostructures with enzyme-like activity, nanozymes have recently attracted extensive attention for their biomedical applications, especially for bacterial disinfection treatment. Nanozymes with high peroxidase activity are considered to be excellent candidates for building bacterial disinfection systems (nanozyme-HO), in which the nanozyme will promote the generation of ROS to kill bacteria based on the decomposition of HO. According to this criterion, a cerium oxide nanoparticle (Nanoceria, CeO, a classical nanozyme with high peroxidase activity)-based nanozyme-HO system would be very efficient for bacterial disinfection.

View Article and Find Full Text PDF