Carbon dots (CDs) have attracted growing interest in the construction of room-temperature phosphorescent (RTP) materials. However, in the solution phase of CDs, it is still challenging to obtain efficient and stable phosphorescent emission due to the intense quenching effect by dissolved oxygen and solvent molecules. Herein, we report robust phosphorescence in the solution phase, achieved by encapsulating citrate-derived CDs into NaYF nanocrystals via a one-step method of high-temperature coprecipitation.
View Article and Find Full Text PDFBiodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.
View Article and Find Full Text PDFThe biodegradation of guar gum by microorganisms sourced from coalbeds can result in low-temperature gel breaking, thereby reducing reservoir damage. However, limited attention has been given to the influence of salinity on the synergistic biodegradation of coal and guar gum. In this study, biodegradation experiments of guar gum and lignite were conducted under varying salinity conditions.
View Article and Find Full Text PDFIn current research, it is still a hot topic for 3D reconstruction under complex illumination. This paper uses a polarization camera combined with a coding technique to propose a new 3D reconstruction method for polarized ambient light separation. Based on the polarization camera, a specific separation model is established to analyze the relationship between the polarization characteristics of polarized and natural light.
View Article and Find Full Text PDFThe structure of coal seam fractures is the main physical property of coalbed methane reservoir evaluation, and the complex resistivity method is a potential geophysical evaluation method for coal seam fractures. In this study, cylindrical coal samples with axial directions perpendicular to the bedding, face cleat, and butt cleat were prepared. The complex electrical parameters of the loaded specimens were tested with test frequencies ranging from 1 Hz to 10 kHz.
View Article and Find Full Text PDFNanotechnology is considered as an emerging effective means to augment plant photosynthesis. However, there is still a lot of work to be done in this field. Here, we applied the upconversion nanoparticles (UCNPs) on lettuce leaves and found that the UCNPs were able to transport into the lettuce body and colocalize with the chloroplasts.
View Article and Find Full Text PDFCarbon dots (CDs) have aroused widespread interest in the construction of room-temperature phosphorescent (RTP) materials. However, it is a great challenge to obtain simultaneous multicolor long-wavelength RTP emission and excellent stability in CD-based RTP materials. Herein, a novel and universal "CDs-in-YOHF" strategy is proposed to generate multicolor and long-wavelength RTP by confining various CDs in the Y(OH)F (YOHF) matrix.
View Article and Find Full Text PDFThe technique of high-voltage electrical pulses (HVEP) is a new method to enhance the permeability of coal seams and improve the efficiency of coalbed methane (CBM) exploitation. This paper is aimed at investigating the crack propagation characteristics of samples of different strengths, proposing the improved procedure of HVEP in field application, and proving that the electrohydraulic effect has a wide use in field application of CBM extraction. In this paper, an experimental system utilizing HVEP in water condition is established, coal samples with different strengths are crushed, and the extended processes of cracks are analyzed.
View Article and Find Full Text PDFAs one of the most promising fluorescent nanomaterials, the fluorescence of carbon dots (CDs) in solution is extensively studied. Nevertheless, the synthesis of multicolor solid-state fluorescence (SSF) CDs is rarely reported. Herein, CDs with multicolor aggregation-induced emission are prepared using amine molecules, all of them exhibiting dual fluorescence emission at 480 nm (Em-1) and 580-620 nm (Em-2), which is related to the SS bonds of dithiosalicylic acid and the conjugated structure attached to CO/CN bonds, respectively.
View Article and Find Full Text PDFRoom-temperature afterglow (RTA) materials with long lifetime have shown tremendous application prospects in many fields. However, there is no general design strategy to construct near-infrared (NIR)-excited multicolor RTA materials. Herein, we report a universal approach based on the efficient radiative energy transfer that supports the reabsorption from upconversion materials (UMs) to carbon dots-based RTA materials (CDAMs).
View Article and Find Full Text PDFThe anaerobic degradation of coal combined with straw biomass can promote the methane production. The biogas production potential and metabolic pathway were explored via the co-digestion simulation experiment of coal and corn straw. The results showed that 2 g of corn straw combined respectively with 4 g of bituminous coal A, 6 g of bituminous coal B and 4 g of bituminous coal C resulted in highest methane yields.
View Article and Find Full Text PDFPurpose: In this study, total lesion glycolysis (TLG) on positron emission tomography images was estimated by a trained and validated CT radiomics model, and its prognostic ability was explored among lung cancer (LC) and esophageal cancer patients (EC).
Methods: Using the identical features between the combined and thin-section CT, the estimation model of SUVsum (summed standard uptake value) was trained from the lymph nodes (LNs) of LC patients (n = 1239). Besides LNs of LC patients from other centers, the validation cohorts also included LNs and primary tumors of LC/EC from the same center.
To improve the utilization efficiency of corn stover , steam explosion pretreatment and cellulase/lactic acid bacteria-assisted ensilage storage were conducted in sequence, mainly focusing on morphological structure, lignocellulose fraction, cellulose accessibility and degradation profile. The results showed that there was a synergistic effect of steam explosion and ensilage storage, where hemicellulose of corn stover was partly degraded during steam explosion processing (70%) or ensilage storage (20-40%). Meanwhile, its morphological structure was apparently broken, increasing cellulose accessibility (2.
View Article and Find Full Text PDFThe mechanism of the solvation-dependent multicolor luminescence of carbon dots (CDs) is not clear, despite the fact that multicolor luminescent CDs have important applications in many fields. In this article, we report solvated chromogenic CDs with productivity of up to 57%. The luminescence of the CD particles exhibits a regular redshift in N,N-dimethylformamide (DMF), ethanol, water, and acetic acid.
View Article and Find Full Text PDFC-dot-based composites with phosphorescence have been widely reported due to their attractive potential in various applications. But easy quenching of phosphorescence induced by oxygen or instability of matrices remained a tricky problem. Herein, we reported a Si-doped-CD (Si-CD)-based RTP materials with long lifetime by embedding Si-CDs in sulfate crystalline matrices.
View Article and Find Full Text PDFThe prognostic nutritional index (PNI) is a significant prognostic factor in diffuse large B cell lymphoma, follicular lymphoma, and other malignancies. The current study aimed to explore its prognostic role in extranodal natural killer/T cell lymphoma (ENKTL). Patients diagnosed with ENKTL and treated during 2002 and 2018 ( = 184) were retrospectively recruited.
View Article and Find Full Text PDFAs one of the most extensively cultivated crops, maize (Zea mays L.) has been extensively studied by researchers and breeders for over a century. With advances in high-throughput detection of various omics data, a wealth of multi-dimensional and multi-omics information has been accumulated for maize and its wild relative, teosinte.
View Article and Find Full Text PDFAbiotic stress severely threatens agriculture. Herein, we studied the effect of heteroatom-free carbon dots (CDs) on the alleviation of abiotic stresses in rice for the first time. During in vitro coincubation, suspended rice cells were exposed to 2,4-dichlorophenoxyacetate sodium (2,4-D-Na, 30 μg mL), 2,4-dichlorophenoxyacetic acid (2,4-D, 5 μg mL), NaCl (0.
View Article and Find Full Text PDFC-Dots and composites based on them face the challenges of poor stability, especially under photo-radiation, and low solid-state photoluminescence quantum yields (PLQYs), which hinder their application in optical devices. Herein, a novel 2-dimensional hybrid material of polysiloxane embedded with Si-doped carbon dots (P-E-Si-CDs) was synthesized by a self-assembly approach, and the hybrid composite exhibited broadband blue-green fluorescence emission, outstanding photostability, high thermal stability, and a high PLQY of 82.8%.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2019
The combination of carbon dots (CDs) and rare-earth ions has attracted increasing attention due to their unique fluorescence properties. Herein, CDs are incorporated with NaYF:Eu to form stable NaYF:Eu@CDs nanocomposites by a simple sol-gel route. It has been demonstrated that CDs are successfully embedded in the silica layer outside NaYF:Eu nanoparticles.
View Article and Find Full Text PDF