In the field of metastatic skeletal oncology imaging, the role of artificial intelligence (AI) is becoming more prominent. Bone metastasis typically indicates the terminal stage of various malignant neoplasms. Once identified, it necessitates a comprehensive revision of the initial treatment regime, and palliative care is often the only resort.
View Article and Find Full Text PDFIn medical and material science, 3D reconstruction is of great importance for quantitative analysis of microstructures. After the image segmentation process of serial slices, in order to reconstruct each local structure in volume data, it needs to use precise object tracking algorithm to recognize the same object region in adjacent slice. Suffering from weak representative hand-crafted features, traditional object tracking methods always draw out under-segmentation results.
View Article and Find Full Text PDFBackground: Cryo-electron tomography is an important and powerful technique to explore the structure, abundance, and location of ultrastructure in a near-native state. It contains detailed information of all macromolecular complexes in a sample cell. However, due to the compact and crowded status, the missing edge effect, and low signal to noise ratio (SNR), it is extremely challenging to recover such information with existing image processing methods.
View Article and Find Full Text PDFThe microscopic image is important data for recording the microstructure information of materials. Researchers usually use image-processing algorithms to extract material features from that and then characterise the material microstructure. However, the microscopic images obtained by a microscope often have random damaged regions, which will cause the loss of information and thus inevitably influence the accuracy of microstructural characterisation, even lead to a wrong result.
View Article and Find Full Text PDFTo improve the optimization quality, stability, and speed of convergence of wolf pack algorithm, an adaptive shrinking grid search chaotic wolf optimization algorithm using standard deviation updating amount (ASGS-CWOA) was proposed. First of all, a strategy of adaptive shrinking grid search (ASGS) was designed for wolf pack algorithm to enhance its searching capability through which all wolves in the pack are allowed to compete as the leader wolf in order to improve the probability of finding the global optimization. Furthermore, opposite-middle raid method (OMR) is used in the wolf pack algorithm to accelerate its convergence rate.
View Article and Find Full Text PDFThis paper focuses on the time series prediction problem for underflow concentration of deep cone thickener. It is commonly used in the industrial sedimentation process. In this paper, we introduce a dual attention neural network method to model both spatial and temporal features of the data collected from multiple sensors in the thickener to predict underflow concentration.
View Article and Find Full Text PDFRecently, many related algorithms have been proposed to find an efficient wireless sensor network with good sustainability, a stable connection, and a high covering rate. To further improve the coverage rate of movable wireless sensor networks under the condition of guaranteed connectivity, this paper proposes an adaptive, discrete space oriented wolf pack optimization algorithm for a movable wireless sensor network (DSO-WPOA). Firstly, a strategy of adaptive expansion based on a minimum overlapping full-coverage model is designed to achieve minimum overlap and no-gap coverage for the monitoring area.
View Article and Find Full Text PDFWith the rapid development of mobile networks and smart terminals, mobile crowdsourcing has aroused the interest of relevant scholars and industries. In this paper, we propose a new solution to the problem of user selection in mobile crowdsourcing system. The existing user selection schemes mainly include: (1) find a subset of users to maximize crowdsourcing quality under a given budget constraint; (2) find a subset of users to minimize cost while meeting minimum crowdsourcing quality requirement.
View Article and Find Full Text PDFThe inner structure of a material is called its microstructure. It stores the genesis of a material and determines all the physical and chemical properties. However, the microstructure is highly complex and numerous image defects such as vague or missing boundaries formed during sample preparation, which makes it difficult to extract the grain boundaries precisely.
View Article and Find Full Text PDF