Control of stem cell behaviors at solid biointerfaces is critical for stem-cell-based regeneration and generally achieved by engineering chemical composition, topography, and stiffness. However, the influence of dynamic stimuli at the nanoscale from solid biointerfaces on stem cell fate remains unclear. Herein, we show that electrochemical switching of a polypyrrole (Ppy) array between nanotubes and nanotips can alter surface adhesion, which can strongly influence mechanotransduction activation and guide differentiation of mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFPhysiological electric potential is well-known for its indispensable role in maintaining bone volume and quality. Although implanted biomaterials simulating structural, morphological, mechanical, and chemical properties of natural tissue or organ has been introduced in the field of bone regeneration, the concept of restoring physiological electric microenvironment remains ignored in biomaterials design. In this work, a flexible nanocomposite membrane mimicking the endogenous electric potential is fabricated to explore its bone defect repair efficiency.
View Article and Find Full Text PDFInorganic bone xenograft materials have recently found extensive surgical application in the clinic. Previously we have demonstrated that calcinated antler cancellous bone (CACB) has great potential for bone defect repair, due to the similar structure and composition compared with human bone. However, the effect of intrinsic material characteristics, particularly deer age, on the physicochemical and biological properties of CACB scaffolds has not been clarified.
View Article and Find Full Text PDF