Free fatty acid receptors (FFARs) play critical roles in metabolic regulation and are potential therapeutic targets for metabolic and inflammatory diseases. A comprehensive understanding of the activation mechanisms and endogenous ligand selectivity of FFARs is essential for drug discovery. Here, we report two cryoelectron microscopy structures of the human FFAR1 bound to the endogenous ligand docosahexaenoic acid (DHA) and G protein as well as FFAR2 in complex with butyrate and G at 3.
View Article and Find Full Text PDFSpecific mechanisms of precipitation change due to global climate variability on plant communities in coastal salt marsh ecosystems remain unknown. Hence, a field manipulative precipitation experiment was established in 2014 and 5 years of field surveys of vegetation from 2017 to 2021 to explore the effects of precipitation changes on plant community composition. The results showed that changes in plant community composition were driven by dominant species, and that the dominance of key species changed significantly with precipitation gradient and time, and that these changes ultimately altered plant community traits (i.
View Article and Find Full Text PDFGene co-expression networks may encode hitherto inadequately recognized vulnerabilities for adult gliomas. By identifying evolutionally conserved gene co-expression modules around EGFR (EM) or PDGFRA (PM), we recently proposed an EM/PM classification scheme, which assigns IDH-wildtype glioblastomas (GBM) into the EM subtype committed in neural stem cell compartment, IDH-mutant astrocytomas and oligodendrogliomas into the PM subtype committed in early oligodendrocyte lineage. Here, we report the identification of EM/PM subtype-specific gene co-expression networks and the characterization of hub gene polypyrimidine tract-binding protein 1 (PTBP1) as a genomic alteration-independent vulnerability in IDH-wildtype GBM.
View Article and Find Full Text PDFCoastal wetlands play an important role in regulating atmospheric carbon dioxide (CO) concentrations and contribute significantly to climate change mitigation. However, climate change, reclamation, and restoration have been causing substantial changes in coastal wetland areas and carbon exchange in China during recent decades. Here we compiled a carbon flux database consisting of 15 coastal wetland sites to assess the magnitude, patterns, and drivers of carbon fluxes and to compare fluxes among contrasting natural, disturbed, and restored wetlands.
View Article and Find Full Text PDFArrestins have pivotal roles in regulating G protein-coupled receptor (GPCR) signalling by desensitizing G protein activation and mediating receptor internalization. It has been proposed that the arrestin binds to the receptor in two different conformations, 'tail' and 'core', which were suggested to govern distinct processes of receptor signalling and trafficking. However, little structural information is available for the tail engagement of the arrestins.
View Article and Find Full Text PDFClimate warming has substantial influences on plant water-use efficiency (PWUE), which is defined as the ratio of plant CO uptake to water loss and is central to the cycles of carbon and water in ecosystems. However, it remains uncertain how does climate warming affect PWUE in wetland ecosystems, especially those with seasonally alternating water availability during the growing season. In this study, we used a continuous 10-year (2011-2020) eddy covariance (EC) dataset from a seasonal hydroperiod wetland coupled with a 15-year (2003-2017) satellite-based dataset (called PML-V2) and an in situ warming experiment to examine the climate warming impacts on wetland PWUE.
View Article and Find Full Text PDFHeterodimerization of the metabotropic glutamate receptors (mGlus) has shown importance in the functional modulation of the receptors and offers potential drug targets for treating central nervous system diseases. However, due to a lack of molecular details of the mGlu heterodimers, understanding of the mechanisms underlying mGlu heterodimerization and activation is limited. Here we report twelve cryo-electron microscopy (cryo-EM) structures of the mGlu2-mGlu3 and mGlu2-mGlu4 heterodimers in different conformational states, including inactive, intermediate inactive, intermediate active and fully active conformations.
View Article and Find Full Text PDFChin J Cancer Res
December 2022
Tumor microenvironment (TME) is highly heterogeneous and composed of complex cellular components, including multiple kinds of immune cells. Among all immune cells in TME, tumor-infiltrating myeloid cells (TIMs) account for a large proportion and play roles as key regulators in a variety of functions, ranging from immune-mediated tumor killing to tumor immune evasion. Understanding the heterogeneity of TIMs will provide valuable insights for new therapeutic targeting of myeloid cells.
View Article and Find Full Text PDFThe effects in field manipulation experiments are strongly influenced by amplified interannual variation in ambient climate as the experimental duration increases. Soil respiration (SR), as an important part of the carbon cycle in terrestrial ecosystems, is sensitive to climate changes such as temperature and precipitation changes. A growing body of evidence has indicated that ambient climate affects the temperature sensitivity of SR, which benchmarks the strength of terrestrial soil carbon-climate feedbacks.
View Article and Find Full Text PDFNeuromedin U receptor 2 (NMU2), an emerging attractive target for treating obesity, has shown the capability in reducing food intake and regulating energy metabolism when activated. However, drug development of NMU2 was deferred partially due to the lack of structural information. Here, we present the cryo-electron microscopy (cryo-EM) structure of NMU2 bound to the endogenous agonist NmU-25 and G at 3.
View Article and Find Full Text PDFBehavioral interventions that address other-regarding motivations (i.e., other-regarding interventions) are gaining momentum as promising tools to stimulate household recycling.
View Article and Find Full Text PDFThe first wave of Foxp3 regulatory T cells (Tregs) generated in neonates is critical for the life-long prevention of autoimmunity. Although it is widely accepted that neonates are highly susceptible to infections, the impact of neonatal infections on this first wave of Tregs is completely unknown. Here, we challenged newborn Treg fate-mapping mice (Foxp3xROSA26) with the Toll-like receptor (TLR) agonists LPS and poly I:C to mimic inflammatory perturbations upon neonatal bacterial or viral infections, respectively, and subsequently administrated tamoxifen during the first 8 days of life to selectively label the first wave of Tregs.
View Article and Find Full Text PDFAs the only member of the CX3C chemokine receptor subfamily, CX3CR1 binds to its sole endogenous ligand CX3CL1, which shows notable potential as a therapeutic target in atherosclerosis, cancer, and neuropathy. However, the drug development of CX3CR1 is hampered partially by the lack of structural information. Here, we present two cryo-electron microscopy structures of CX3CR1-G complexes in ligand-free and CX3CL1-bound states at 2.
View Article and Find Full Text PDFSomatostatin receptors (SSTRs) play versatile roles in inhibiting the secretion of multiple hormones such as growth hormone and thyroid-stimulating hormone, and thus are considered as targets for treating multiple tumors. Despite great progress made in therapeutic development against this diverse receptor family, drugs that target SSTRs still show limited efficacy with preferential binding affinity and conspicuous side-effects. Here, we report five structures of SSTR2 and SSTR4 in different states, including two crystal structures of SSTR2 in complex with a selective peptide antagonist and a non-peptide agonist, respectively, a cryo-electron microscopy (cryo-EM) structure of G-bound SSTR2 in the presence of the endogenous ligand SST-14, as well as two cryo-EM structures of G-bound SSTR4 in complex with SST-14 and a small-molecule agonist J-2156, respectively.
View Article and Find Full Text PDFBackground: The large inter-individual variability in immune-cell composition and function determines immune responses in general and susceptibility o immune-mediated diseases in particular. While much has been learned about the genetic variants relevant for type 1 diabetes (T1D), the pathophysiological mechanisms through which these variations exert their effects remain unknown.
Methods: Blood samples were collected from 243 patients with T1D of Dutch descent.
Recent genome-wide association studies (GWASs) of COVID-19 patients of European ancestry have identified genetic loci significantly associated with disease severity. Here, we employed the detailed clinical, immunological and multi-omics dataset of the Human Functional Genomics Project (HFGP) to explore the physiological significance of the host genetic variants that influence susceptibility to severe COVID-19. A genomics investigation intersected with functional characterization of individuals with high genetic risk for severe COVID-19 susceptibility identified several major patterns: i.
View Article and Find Full Text PDFThe senescence of cardiovascular endothelial cells (ECs) is a major risk factor in the development of aging-related cardiovascular diseases. However, the molecular dynamics in cardiovascular EC aging are poorly understood. Here, we characterized the transcriptomic landscape of cardiovascular ECs during aging and observed that ribosome biogenesis, inflammation, apoptosis and angiogenesis-related genes and pathways changed with age.
View Article and Find Full Text PDF