Publications by authors named "Xiaojin Pei"

Insect cuticular hydrocarbons (CHCs) serve as important waterproofing barriers and as signals and cues in chemical communication. Over the past 30 years, numerous studies on CHCs have been conducted in the German cockroach, Blattella germanica, leading to substantial progress in the field. However, there has not been a systematic review of CHC studies in this species in recent years.

View Article and Find Full Text PDF
Article Synopsis
  • BgACC is a crucial gene in the German cockroach that regulates both lipid production and sugar balance, primarily expressed in the fat body and integument.
  • Disrupting BgACC during the nymphal stage led to lethal outcomes during adult emergence, revealing its role in development and survival.
  • The study highlights how BgACC influences reproduction, sugar tolerance, and metabolic processes, providing insights into the interplay between lipid and sugar metabolism in insects.
View Article and Find Full Text PDF

In insects, the loss of flight typically involves a dispersal-reproduction transition, but the underlying molecular mechanisms remain poorly understood. In the parthenogenetic pea aphid Acyrthosiphon pisum, winged females undergo flight-muscle degeneration after flight and feeding on new host plants. Similarly, topical application of a juvenile hormone (JH) mimic to starved aphids also induces flight-muscle degeneration.

View Article and Find Full Text PDF

Sex differentiation and hormones are essential for the development of sexual signals in animals, and the regulation of sexual signals involves complex gene networks. However, it is unknown whether a core gene is able to connect the upstream regulators for controlling sexual signal outputs and behavioural consequences. Here, we identify a single gene that integrates both sex differentiation and hormone signalling with sexual attractiveness in an insect model.

View Article and Find Full Text PDF

Melanin is involved in cuticle pigmentation and sclerotization of insects, which is critical for maintaining structural integrity and functional completeness of insect cuticle. The 2 key enzymes of tyrosine hydroxylase (TH) and dopa decarboxylase (DDC) predicted in melanin biosynthesis are usually conserved in insects. However, it is unclear whether their function is related to epidermal permeability.

View Article and Find Full Text PDF

Cuticular hydrocarbons (CHCs) are diverse in insects, and include variable classes of cuticular lipids, contributing to waterproofing for insects under desiccation environments. However, this waterproofing function of CHCs is still not well characterized in aphids. In this study, we compared CHC profiles for desiccation-resistant and nonresistant genotypes of the grain aphid, Sitobion avenae (Fabricius), in responses to desiccation.

View Article and Find Full Text PDF

Insect cuticular hydrocarbons (CHCs) serve as important intersexual signaling chemicals and generally show variation between the sexes, but little is known about the generation of sexually dimorphic hydrocarbons (SDHCs) in insects. In this study, we report the molecular mechanism and biological significance that underlie the generation of SDHC in the German cockroach Blattella germanica. Sexually mature females possess more C29 CHCs, especially the contact sex pheromone precursor 3,11-DimeC29.

View Article and Find Full Text PDF

Insect cuticular hydrocarbons (CHCs) are organic compounds of the surface lipid layer, which function as a barrier against water loss and xenobiotic penetration, while also serving as chemical signals. Plasticity of CHC profiles can vary depending upon numerous biological and environmental factors. Here, we investigated potential sources of variation in CHC profiles of , and which are considered to be the most important rice pests in Asia.

View Article and Find Full Text PDF

Water retention is critical for physiological homeostasis and survival in terrestrial insects. While deposition of hydrocarbons on insect cuticles as a key measure for water conservation has been extensively investigated, we know little about other mechanisms for preventing water loss in insects. Here, we report two fatty acid synthetic genes that are independent of hydrocarbon production but crucial for water retention in the German cockroach Blattella germanica (L.

View Article and Find Full Text PDF

Cuticular hydrocarbons form a barrier that protects terrestrial insects from water loss via the epicuticle. Lipophorin loads and transports lipids, including hydrocarbons, from one tissue to another. In some insects, the lipophorin receptor (LpR), which binds to lipophorin and accepts its lipid cargo, is essential for female fecundity because it mediates the incorporation of lipophorin by developing oocytes.

View Article and Find Full Text PDF

Insect cuticular hydrocarbons (CHCs), the evolutionary products of aquatic hexapod ancestors expanding to terrestrial environment, are deposited on the surface of insect integument and originally functioned primarily as waterproofing agents. CHCs are derived from the conserved fatty acid synthesis pathway in insects. However, the pivotal fatty acid synthase (FAS) involved in hydrocarbon (HC) biosynthesis remains unknown in many insect orders including the primitive Blattodea.

View Article and Find Full Text PDF

Background: Cuticle penetration plays an important role as a mechanism of insecticide resistance, but the underlying molecular mechanism remains poorly understood. In Blattella germanica, the cytochrome P450 gene, CYP4G19, is overexpressed in a pyrethroid-resistant strain. Here, we investigated whether CYP4G19 is involved in the biosynthesis of hydrocarbons and further contributes to cuticular penetration resistance in B.

View Article and Find Full Text PDF