Immunometabolism is critical in the regulation of immunity and inflammation; however, the mechanism of preventing aberrant activation-induced immunopathology remains largely unclear. Here, we report that glyoxalase II (GLO2) in the glycolysis branching pathway is specifically downregulated by NF-κB signaling during innate immune activation via tristetraprolin (TTP)-mediated mRNA decay. As a result, its substrate S-D-lactoylglutathione (SLG) accumulates in the cytosol and directly induces D-lactyllysine modification of proteins.
View Article and Find Full Text PDFThe application of antibiotics has advanced modern medicine significantly. However, the abuse and discharge of antibiotics have led to substantial antibiotic residues in water, posing great harm to natural organisms and humans. To address the problem of antibiotic degradation, this study developed a novel catalytic membrane by depositing Co catalysts onto MXene nanosheets and fabricating the polyethersulfone composite (Co@MXene/PES) using vacuum-assisted self-assembly.
View Article and Find Full Text PDFWith the rapid advancements in spatial transcriptome sequencing, multiple tissue slices are now available, enabling the integration and interpretation of spatial cellular landscapes. Herein, we introduce SpaDo, a tool for multi-slice spatial domain analysis, including modules for multi-slice spatial domain detection, reference-based annotation, and multiple slice clustering at both single-cell and spot resolutions. We demonstrate SpaDo's effectiveness with over 40 multi-slice spatial transcriptome datasets from 7 sequencing platforms.
View Article and Find Full Text PDFEffective hemostatic materials have been in demand for rapid pre-hospital hemostasis in emergency situations, which can significantly reduce accidental deaths. The development of emergency hemostatic materials with rapid hemostasis, biosafety, and economical preparation is a great challenge. In this study, Ca(OH)-complexed diatom powder hemostatic particles (Ca(OH)-Php) were prepared based on a one-pot reaction by directly mixing various raw materials and by rotary granulation.
View Article and Find Full Text PDFCytochrome P450s represent one of the largest protein families across all domains of life. In plants, biotic stress can regulate the expression of some P450 genes. However, the CYPome (cytochrome P450 complement) in Solanum tuberosum and its response to Phytophthora infestans infection remains unrevealed.
View Article and Find Full Text PDFBackground: The precise characterization of individual tumors and immune microenvironments using transcriptome sequencing has provided a great opportunity for successful personalized cancer treatment. However, the cancer treatment response is often characterized by in vitro assays or bulk transcriptomes that neglect the heterogeneity of malignant tumors in vivo and the immune microenvironment, motivating the need to use single-cell transcriptomes for personalized cancer treatment.
Methods: Here, we present comboSC, a computational proof-of-concept study to explore the feasibility of personalized cancer combination therapy optimization using single-cell transcriptomes.
Am J Nucl Med Mol Imaging
October 2023
The earlier identification of EGFR mutation status in lung adenocarcinoma patients is crucial for treatment decision-making. Radiomics, which involves high-throughput extraction of imaging features from medical images for quantitative analysis, can quantify tumor heterogeneity and assess tumor biology non-invasively. This field has gained attention from researchers in recent years.
View Article and Find Full Text PDFUnlabelled: Hemorrhage control requires hemostatic materials that are both effective and biocompatible. Among these, diatom biosilica (DBs) could significantly improve hemorrhage control, but it induces hemolysis (the hemolysis rate > 5%). Thus, the purpose of this study was to explore the influence of Ca biomineralization on DBs for developing fast hemostatic materials with a low hemolysis rate.
View Article and Find Full Text PDFNovel MXene-based two-dimensional (2D) membranes are widely used for water purification due to their highly controllable structure and antibacterial properties. However, in the process of membrane separation, the problems of membrane fouling, especially biological fouling, limits the further application of MXene-based membranes. In this study, in order to improve the antibacterial and separation properties of membranes, three kinds of MXene-based 2D-2D composite membranes (M2~M4) were prepared using polyethersulfone (PES) as the substrate, which were GO@MXene, O-g-CN@MXene and BiOCl@MXene composite membranes respectively.
View Article and Find Full Text PDFObjective: This study seeks to assess the efficacy of exfoliated colonocytes isolated from feces (ECIF) miR-92a as a clinical colorectal cancer diagnostic marker in a larger cohort.
Methods: Clinicopathologic data from colorectal cancer patients and health controls that underwent colonoscopy, as well as patients of other cancers diagnosed, were included. A total of 963 Chinese participants were enrolled, with 292 (27.
Skin lesions caused by ultraviolet radiation exposure seriously reduce people's life quality, safe natural products development to prevent and repair ultraviolet damage is an effective strategy. We investigated the protective and reparative effects of the natural composite gel (SE-gel) derived from fish scales on UV-irradiated skin by inhibiting reactive oxygen species (ROS) -mediated oxidative stress and inflammatory responses. Our results showed that SE-gel rich in glycine and proline had good ultraviolet absorption, water absorption, moisturizing and free radical scavenging abilities.
View Article and Find Full Text PDFThe titanosilicate zeolite with a MWW topology structure was synthesized by the atom-planting method through the dehydrochlorination of the hydroxyl group in the deboronated ERB-1 zeolite (D-ERB-1) and TiCl, and Au was further loaded with the deposition precipitation method to apply for the ethane direct dehydrogenation (DH) and dehydrogenation of ethane in the presence of O (O-DH). It was found that Au nanoparticles (NPs) below 5 nm exhibited good activity for ethane direct dehydrogenation and O-DH. The addition of titanium can not only anchor more Au but also make Au have a more dispersed homogeneous distribution.
View Article and Find Full Text PDFHydrogel, as three-dimensional (3D) cell culture scaffold, is an effective strategy for tissue and organ regeneration due to their good biocompatibility, biodegradability and resemblance to body microenvironments in vivo. However, the inherent weak mechanical properties and strong shrinkage of hydrogels during cell culture hinder its application in clinical. In this study, a two-component thermo/photo dual-sensitive hydrogel (M/C) was prepared from methacrylated hydroxybutyl chitosan (MHBC) and chitin whisker (CHW) via physical and chemical cross-linking methods.
View Article and Find Full Text PDFWe previously found that the combination of protease and a novel β-porphyranase Por16A_Wf may contribute to the deep-processing of laver. The purpose of the present study is to assess the hypoglycemic effect of the compound enzymatic hydrolysate (CEH) of . Thus, biochemical indexes related to diet-induced hyperglycemia were mainly detected using hematoxylin and eosin (H&E) staining, fluorescence quantitative PCR, and ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS).
View Article and Find Full Text PDFIntestinal mucosal immunity is important to human body; however, obesity induced by high-fat diet may bring a series of problems, such as chronic inflammation which may damage intestinal mucosal immunity. In this study, the effects of two different enzymatic hydrolysates of porphyra on the function of intestinal mucosal were explored in obese mice. The results showed that 10 consecutive weeks of high-fat dietary intake resulted in weight gain and intestinal abnormalities in C57BL/6 mice.
View Article and Find Full Text PDFAqueous-phase oxidation by H O , known as the Fenton-type process, provides an attractive route to convert recalcitrant lignin derivatives to valuable chemicals under mild conditions. The development of this technology is, however, limited by the uncontrolled selectivity, resulting from the highly reactive nature of H O and the thermodynamically favored deep oxidation to form CO . This study demonstrated that formic acid could be produced with a high selectivity (up to 80.
View Article and Find Full Text PDFAimed at improving the electromagnetic (EM) shielding and flame retardancy of cellulose materials, graphene (GE) nanoplates were introduced into cellulose matrix films by blending in1-allyl-3-methylimidazolium chloride. The structure and performance of the obtained composite films were investigated using scanning electron microscopy, X-ray diffraction, thermogravimetric (TG) analysis, EM shielding effectiveness (SE), and combustion tests. GE introduction formed and stacked laminated structures in the films after drying due to controlled shrinkage of the cellulose matrix.
View Article and Find Full Text PDFCordycepin is a major bioactive compound found in () that exhibits a broad spectrum of biological activities. Hence, it is potentially a bioactive ingredient of pharmaceutical and cosmetic products. However, overexploitation and low productivity of natural is a barrier to commercialization, which leads to insufficient supply to meet its existing market demands.
View Article and Find Full Text PDFCancers that are histologically defined as the same type of cancer often need a distinct therapy based on underlying heterogeneity; likewise, histologically disparate cancers can require similar treatment approaches due to intrinsic similarities. A comprehensive analysis integrated with drug response data and molecular alterations, particularly to reveal therapeutic concordance mechanisms across histologically disparate tumor subtypes, has not yet been fully exploited. In this study, we integrated pharmacological, genomic, and transcriptomic profiling data provided from the Cancer Genome Project (CGP) in a systematic in silico investigation of the pharmacological subtypes of cancers and the intrinsic concordance of molecular mechanisms leading to similar therapeutic responses across histologically disparate tumor subtypes.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2021
Bacterial infection tendentiously triggers inflammasome activation, whereas the roles of inflammasome activation in host defense against diverse infections remain unclear. Here, we identified that an ASC-dependent inflammasome activation played opposite roles in host defense against wild-type (WT) U112 and mutant strain XWK4. Comparing with U112, XWK4 infection induced robust cytokine production, ASC-dependent inflammasome activation, and pyroptosis.
View Article and Find Full Text PDFFront Microbiol
October 2021
, commonly known as koji mold, has been widely used for the large-scale production of food products (sake, makgeolli, and soy sauce) and can accumulate a high level of lipids. In the present study, we showed the dynamic changes in mycelium growth and conidia formation under nitrogen and phosphorus nutrient stress. The fatty acid profile of was determined and the content of unsaturated fatty acid was found increased under nitrogen and phosphorus limitation.
View Article and Find Full Text PDFBackground: Triple-negative breast cancer (TNBC) patients have a high 2-year post-operative incidence of brain metastasis (BM). Currently, there is no early prediction tool to predict the risk of BM in TNBC patients.
Methods: Data of breast cancer patients, who had been scanned, resected, and pathologically diagnosed at a local hospital from May 2012 to June 2018 were collected.
•ANXA2 is a novel MOR1-interacting protein regulating MOR1 sub-cellular localization.•ANXA2 retains MOR1 in late recycling endosomes after remifentanil exposure.
View Article and Find Full Text PDFReversible solid oxide cells (RSOCs) present a conceivable potential for addressing energy storage and conversion issues through realizing efficient cycles between fuels and electricity based on the reversible operation of the fuel cell (FC) mode and electrolysis cell (EC) mode. Reliable electrode materials with high electrochemical catalytic activity and sufficient durability are imperatively desired to stretch the talents of RSOCs. Herein, oxygen vacancy engineering is successfully implemented on the Fe-based layered perovskite by introducing Zr, which is demonstrated to greatly improve the pristine intrinsic performance, and a novel efficient and durable oxygen electrode material is synthesized.
View Article and Find Full Text PDF