Publications by authors named "Xiaojiao Xue"

Using small molecules to induce readthrough of premature termination codons is a promising therapeutic approach to treating genetic diseases and cancers caused by nonsense mutations, as evidenced by the widespread use of ataluren to treat nonsense mutation Duchene muscular dystrophy. Herein we describe a series of novel guanidino quinazoline and pyrimidine scaffolds that induce readthrough in both HDQ-P1 mammary carcinoma cells and mdx myotubes. Linkage of basic, tertiary amines with aliphatic, hydrophobic substituents to the terminal guanidine nitrogen of these scaffolds led to significant potency increases.

View Article and Find Full Text PDF

Abstarct: Suppressing translation termination at premature termination codons (PTCs), termed readthrough, is a potential therapy for genetic diseases caused by nonsense mutations. Ataluren is a compound that has shown promise for clinical use as a readthrough agent. However, some reports suggest that ataluren is ineffective at suppressing PTCs.

View Article and Find Full Text PDF

Nonsense mutations, resulting in a premature stop codon in the open reading frame of mRNAs are responsible for thousands of inherited diseases. Readthrough of premature stop codons by small molecule drugs has emerged as a promising therapeutic approach to treat disorders resulting from premature termination of translation. The aminoglycoside antibiotics are a class of molecule known to promote readthrough at premature termination codons.

View Article and Find Full Text PDF

In-frame premature termination codons (PTCs) account for ∼11% of all disease-associated mutations. PTC suppression therapy utilizes small molecules that suppress translation termination at a PTC to restore synthesis of a full-length protein. PTC suppression is mediated by the base pairing of a near-cognate aminoacyl-tRNA with a PTC and subsequently, the amino acid becomes incorporated into the nascent polypeptide at the site of the PTC.

View Article and Find Full Text PDF

A premature termination codon (PTC) in the ORF of an mRNA generally leads to production of a truncated polypeptide, accelerated degradation of the mRNA, and depression of overall mRNA expression. Accordingly, nonsense mutations cause some of the most severe forms of inherited disorders. The small-molecule drug ataluren promotes therapeutic nonsense suppression and has been thought to mediate the insertion of near-cognate tRNAs at PTCs.

View Article and Find Full Text PDF

Rationale: Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic.

Objectives: To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs.

View Article and Find Full Text PDF

Nonsense suppression therapy encompasses approaches aimed at suppressing translation termination at in-frame premature termination codons (PTCs, also known as nonsense mutations) to restore deficient protein function. In this review, we examine the current status of PTC suppression as a therapy for genetic diseases caused by nonsense mutations. We discuss what is currently known about the mechanism of PTC suppression as well as therapeutic approaches under development to suppress PTCs.

View Article and Find Full Text PDF

New drugs are needed to enhance premature termination codon (PTC) suppression to treat the underlying cause of cystic fibrosis (CF) and other diseases caused by nonsense mutations. We tested new synthetic aminoglycoside derivatives expressly developed for PTC suppression in a series of complementary CF models. Using a dual-luciferase reporter system containing the four most prevalent CF transmembrane conductance regulator (CFTR) nonsense mutations (G542X, R553X, R1162X, and W1282X) within their local sequence contexts (the three codons on either side of the PTC), we found that NB124 promoted the most readthrough of G542X, R1162X, and W1282X PTCs.

View Article and Find Full Text PDF

The protein Sgf29 has been identified as a subunit of the SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase complex in Saccharomyces cerevisiae, which is conserved from yeast to humans. The tandem tudor domain at the C-terminus of Sgf29 was crystallized using the hanging-drop vapour-diffusion method and the crystals diffracted to 1.92 A resolution.

View Article and Find Full Text PDF