Publications by authors named "Xiaojiang Du"

The COVID-19 pandemic has caused serious consequences in the last few months and trying to control it has been the most important objective. With effective prevention and control methods, the epidemic has been gradually under control in some countries and it is essential to ensure safe work resumption in the future. Although some approaches are proposed to measure people's healthy conditions, such as filling health information forms or evaluating people's travel records, they cannot provide a fine-grained assessment of the epidemic risk.

View Article and Find Full Text PDF

Recently, underwater wireless sensor networks (UWSNs) have been considered as a powerful technique for many applications. However, acoustic communications in UWSNs bring in huge QoS issues for time-critical applications. Additionally, excessive control packets and multiple copies during the data transmission process exacerbate this challenge.

View Article and Find Full Text PDF

Wi-Fi uploading is considered an effective method for offloading the traffic of cellular networks generated by the data uploading process of mobile crowd sensing applications. However, previously proposed Wi-Fi uploading schemes mainly focus on optimizing one performance objective: the offloaded cellular traffic or the reduced uploading cost. In this paper, we propose an Intelligent Data Uploading Selection Mechanism (IDUSM) to realize a trade-off between the offloaded traffic of cellular networks and participants' uploading cost considering the differences among participants' data plans and direct and indirect opportunistic transmissions.

View Article and Find Full Text PDF

With the emergence of vehicular Internet-of-Things (IoT) applications, it is a significant challenge for vehicular IoT systems to obtain higher throughput in vehicle-to-cloud multipath transmission. Network Coding (NC) has been recognized as a promising paradigm for improving vehicular wireless network throughput by reducing packet loss in transmission. However, existing researches on NC do not consider the influence of the rapid quality change of wireless links on NC schemes, which poses a great challenge to dynamically adjust the coding rate according to the variation of link quality in vehicle-to-cloud multipath transmission in order to avoid consuming unnecessary bandwidth resources and to increase network throughput.

View Article and Find Full Text PDF

Cognitive radio (CR) is a critical technique to solve the conflict between the explosive growth of traffic and severe spectrum scarcity. Reasonable radio resource allocation with CR can effectively achieve spectrum sharing and co-channel interference (CCI) mitigation. In this paper, we propose a joint channel selection and power adaptation scheme for the underlay cognitive radio network (CRN), maximizing the data rate of all secondary users (SUs) while guaranteeing the quality of service (QoS) of primary users (PUs).

View Article and Find Full Text PDF

Wireless sensor networks have been widely adopted, and neighbor discovery is an essential step to construct the networks. Most existing studies on neighbor discovery are designed on the assumption that either all nodes are fully connected or only two nodes compose the network. However, networks are partially connected in reality: some nodes are within radio range of each other, while others are not.

View Article and Find Full Text PDF

As one of the main applications of the Internet of things (IoT), the vehicular ad-hoc network (VANET) is the core of the intelligent transportation system (ITS). Air-ground integrated vehicular networks (AGIVNs) assisted by unmanned aerial vehicles (UAVs) have the advantages of wide coverage and flexible configuration, which outperform the ground-based VANET in terms of communication quality. However, the complex electromagnetic interference (EMI) severely degrades the communication performance of UAV sensors.

View Article and Find Full Text PDF

The explosive number of vehicles has given rise to a series of traffic problems, such as traffic congestion, road safety, and fuel waste. Collecting vehicles' speed information is an effective way to monitor the traffic conditions and avoid vehicles' congestion, however it may threaten vehicles' location and trajectory privacy. Motivated by the fact that traffic monitoring does not need to know each individual vehicle's speed and the average speed would be sufficient, we propose a privacy-preserving traffic monitoring (PPTM) scheme to aggregate vehicles' speeds at different locations.

View Article and Find Full Text PDF

Access and utilization of data are central to the cloud computing paradigm. With the advent of the Internet of Things (IoT), the tendency of data sharing on the cloud has seen enormous growth. With data sharing comes numerous security and privacy issues.

View Article and Find Full Text PDF

Intelligent medical service system integrates wireless internet of things (WIoT), including medical sensors, wireless communications, and middleware techniques, so as to collect and analyze patients' data to examine their physical conditions by many personal health devices (PHDs) in real time. However, large amount of malicious codes on the Android system can compromise consumers' privacy, and further threat the hospital management or even the patients' health. Furthermore, this sensor-rich system keeps generating large amounts of data and saturates the middleware system.

View Article and Find Full Text PDF

Many IoT (Internet of Things) systems run Android systems or Android-like systems. With the continuous development of machine learning algorithms, the learning-based Android malware detection system for IoT devices has gradually increased. However, these learning-based detection models are often vulnerable to adversarial samples.

View Article and Find Full Text PDF

In recent years, with the development of the marine industry, the ship navigation environment has become more complicated. Some artificial intelligence technologies, such as computer vision, can recognize, track and count sailing ships to ensure maritime security and facilitate management for Smart Ocean systems. Aiming at the scaling problem and boundary effect problem of traditional correlation filtering methods, we propose a self-selective correlation filtering method based on box regression (BRCF).

View Article and Find Full Text PDF

Throughout the past decade, vehicular networks have attracted a great deal of interest in various fields. The increasing number of vehicles has led to challenges in traffic regulation. Vehicle-type detection is an important research topic that has found various applications in numerous fields.

View Article and Find Full Text PDF

High-precision and fast relative positioning of a large number of mobile sensor nodes (MSNs) is crucial for smart industrial wireless sensor networks (SIWSNs). However, positioning multiple targets simultaneously in three-dimensional (3D) space has been less explored. In this paper, we propose a new approach, called Angle-of-Arrival (AOA) based Three-dimensional Multi-target Localization (ATML).

View Article and Find Full Text PDF

With the popularization of IoT (Internet of Things) devices and the continuous development of machine learning algorithms, learning-based IoT malicious traffic detection technologies have gradually matured. However, learning-based IoT traffic detection models are usually very vulnerable to adversarial samples. There is a great need for an automated testing framework to help security analysts to detect errors in learning-based IoT traffic detection systems.

View Article and Find Full Text PDF

Emerging sensor networks (ESNs) are an inevitable trend with the development of the Internet of Things (IoT), and intend to connect almost every intelligent device. Therefore, it is critical to study resource allocation in such an environment, due to the concern of efficiency, especially when resources are limited. By viewing ESNs as multi-agent environments, we model them with an agent-based modelling (ABM) method and deal with resource allocation problems with market models, after describing users' patterns.

View Article and Find Full Text PDF