Publications by authors named "Xiaojian Fan"

Sensitive and accurate miRNA detection is important in cancer diagnosis but remains challenging owing to the essential features of miRNAs, such as their small size, high homology, and low abundance. This work proposes a novel electrochemical (EC)-enhanced quantum sensor achieving quantitative detection of miRNA-155 with simultaneous EC sensing. Specifically, fluorescent nanodiamonds/MXene nanocomposites were synthesized and modified with dual-mode signal labels, enabling miRNA-155 concentration measurement via relaxation time of nitrogen-vacancy (NV) centers and EC signals.

View Article and Find Full Text PDF

TiCTMXene has attracted widespread attention in lubrication owing to its unique structure and surface properties. However, the inferior nanotribological properties of TiCTstill limit its applications in nano lubricants. Herein, we propose a controllable interface-tailored strategy to reduce the nanotribological properties of TiCTby depositing MoSnano-sheet on its surface using atomic layer deposition (ALD).

View Article and Find Full Text PDF

Herein, an electrochemical sensing platform based on zwitterionic peptide with a hierarchical structure was constructed for ultralow fouling and highly sensitive protein quantification. Through the combination of CPPPPEKEKEKEK and CPPPPEKEKEK peptides, hierarchical antifouling peptide brushes were formed and exhibited excellent antifouling property, which can be further modified with alpha fetoprotein (AFP) aptamer to achieve highly sensitive detection of AFP. The hierarchical peptide brush-based sensor system achieved an AFP quantification range from 1.

View Article and Find Full Text PDF

Low fouling electrochemical immunosensors with both "signal-off" and "signal-on" analytical methods were developed for the highly sensitive and efficient detection of cancer antigen 15-3 (CA 15-3) in human serum samples. The antifouling sensing interfaces were constructed by assembling multifunctional polyethylene glycol on gold electrodes, followed by covalent conjugation with CA 15-3 antibody. Pure antigens and FeO@Ag will competitively bind to the immobilized antibody on the electrode.

View Article and Find Full Text PDF

A sensitive and rapid fluorometric "switch on" assay is described for the detection of microRNA-21. It is based on the use of a fluorescence resonance energy transfer pair consisting of lysozyme-modified gold nanoclusters (Lys-Au NCs) and carbon nanotubes (CNTs). The Lys-Au NCs can be synthesized by a microwave-assisted technique within 2.

View Article and Find Full Text PDF

Background: Transcutaneous electric acupoint stimulation (TEAS) has shown benefits when used peri-operatively. However, the role of numbers of areas with acupoint stimulation is still unclear. Therefore, we report the protocol of a randomized controlled trial of using TEAS in elderly patients subjected to gastrointestinal surgery, and comparing dual-acupoint and single-acupoint stimulation.

View Article and Find Full Text PDF

A sensitive and low-fouling aptasensor for alpha-fetoprotein (AFP) was developed based on mixed self-assembled aptamers and newly designed zwitterionic peptides, where densely immobilized peptides formed an antifouling layer to resist nonspecific protein adsorption, and sparsely attached aptamers acted as the recognizing layer to achieve target binding. The obtained biosensing interface responded to the target AFP with a strikingly selective and sensitive manner, exhibited excellent protein-resistant performance even in complex human serum solution, and showed promising feasibility for the quantitative analysis of AFP in real human serum samples.

View Article and Find Full Text PDF

Here, a multidimensional sensor array capable of analyzing various proteins and discriminating between serums from different stages of breast cancer patients were developed based on six kinds of near infrared fluorescent dual ligand functionalized Au NCs (functionalized with different amino acids) as sensing receptors. These six kinds of different amino acids functionalized Au NCs were synthesized for the first time within 2h due to the direct donation of delocalized electrons of electron-rich atoms or groups of the ligands to the Au core. Based on this, ten proteins could be simultaneously and effectively discriminated by this "chemical nose/tongue" sensor array.

View Article and Find Full Text PDF

In order to decrease the incidence of flap necrosis after reconstructive surgeries, new approaches are required. In the present study, a model of venous congested flaps in rats was established to test the heat shock protein (HSP) 90α, 'F-5', protein as an intervention therapy to alleviate ischemia-reperfusion injury. A recombinant plasmid pET15b-F-5 carrying the gene was constructed and the induced protein was purified from bacterial cell cultures.

View Article and Find Full Text PDF

Biocompatible polymers, such as poly(ethylene glycol) (PEG), are of great significance in the development of bio-interfaces and biosensors, as they possess excellent biocompatibility and are easy for modification. A novel highly biocompatible polymer composite was synthesized herein through electrochemical polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and a PEG derivative, 4-arm PEG terminated with thiol groups. The electrodeposited conducting polymer composite of PEG doped PEDOT (PEDOT/PEG) exhibited flake-like nanostructure, large surface area and outstanding stability.

View Article and Find Full Text PDF

A label-free and low fouling biosensor based on functional polyethylene glycols selective for breast cancer susceptibility gene (BRCA1) is reported. Sensory interfaces were prepared through the modification of a glassy carbon electrode with highly cross-linked polyethylene glycol (PEG) film containing amine groups, followed by the self-assembly of gold nanoparticles and the immobilization of BRCA1 complementary single-strand 19-mer oligonucleotides. In the presence of a specific BRCA1 sequence capture and hybridization results in interfacial change sensitively monitored using electrochemical impedance spectroscopy.

View Article and Find Full Text PDF