Nanophase iron (np-Fe) is widely distributed on the surface of lunar soil particles, forming as a result of space weathering. These np-Fe particles contribute to the reddening and darkening of the visible to near-infrared spectra of weathered lunar material and serve as critical indicators for assessing the maturity of lunar soil. (1) This article reviews the proposed formation mechanisms of np-Fe particles from studies of Apollo and Luna soils, including the thermal reduction of iron melts, vapor deposition caused by micrometeorite impacts, and hydrogen reduction due to solar wind exposure.
View Article and Find Full Text PDFLunar soils record the history and spectral changes resulting from the space-weathering process. The solar wind and micrometeoroids are the main space-weathering agents leading to darkening (decreasing albedo) and reddening (increasing reflectance with longer wavelength) of visible and near-infrared spectra. Nevertheless, their relative contributions are not well constrained and understood.
View Article and Find Full Text PDFMany countries and commercial organizations have shown great interest in constructing a Martian base. resource utilization (ISRU) provides a cost-effective way to achieve this ambitious goal. In this article, we proposed to use Martian soil simulant to produce a fiber to satisfy material requirement for the construction of Martian base.
View Article and Find Full Text PDFYutu-2 rover conducted an exciting expedition on the 41st lunar day to investigate a fin-shaped rock at Longji site (45.44°S, 177.56°E) by extending its locomotion margin on perilous peaks.
View Article and Find Full Text PDFThe Zhurong rover of the Tianwen-1 mission landed in southern Utopia Planitia, providing a unique window into the evolutionary history of the Martian lowlands. During its first 110 sols, Zhurong investigated and categorized surface targets into igneous rocks, lithified duricrusts, cemented duricrusts, soils and sands. The lithified duricrusts, analysed by using laser-induced breakdown spectroscopy onboard Zhurong, show elevated water contents and distinct compositions from those of igneous rocks.
View Article and Find Full Text PDFFerric iron as well as magnetite are rarely found in lunar samples, and their distribution and formation mechanisms on the Moon have not been well studied. Here, we discover sub-microscopic magnetite particles in Chang'E-5 lunar soil. Magnetite and pure metallic iron particles are embedded in oxygen-dissolved iron-sulfide grains from the Chang'E-5 samples.
View Article and Find Full Text PDFThe formation and distribution of lunar surficial water remains ambiguous. Here, we show the prominence of water (OH/HO) attributed to solar wind implantation on the uppermost surface of olivine, plagioclase, and pyroxene grains from Chang'E-5 samples. The results of spectral and microstructural analyses indicate that solar wind-derived water is affected by exposure time, crystal structure, and mineral composition.
View Article and Find Full Text PDF