One of the biggest challenges for the fault diagnosis research of industrial robots is that the normal data is far more than the fault data; that is, the data is imbalanced. The traditional diagnosis approaches of industrial robots are more biased toward the majority categories, which makes the diagnosis accuracy of the minority categories decrease. To solve the imbalanced problem, the traditional algorithm is improved by using cost-sensitive learning, single-class learning and other approaches.
View Article and Find Full Text PDFElectromagnetic coils are one of the key components of many systems. Their insulation failure can have severe effects on the systems in which coils are used. This paper focuses on insulation degradation monitoring and remaining useful life (RUL) prediction of electromagnetic coils.
View Article and Find Full Text PDF