To achieve high accuracy and effectiveness in sensing and modulating neural activity, efficient charge-transfer biointerfaces and a high spatiotemporal resolution are required. Ultrathin bioelectrode arrays exhibiting mechanical compliance with biological tissues offer such biointerfaces. However, their thinness often leads to a lack of mechano-electrical stability or sufficiently high electrochemical capacitance, thus deteriorating their overall performance.
View Article and Find Full Text PDFUnderstanding psychology is an important task in modern society which helps predict human behavior and provide feedback accordingly. Monitoring of weak psychological and emotional changes requires bioelectronic devices to be stretchable and compliant for unobtrusive and high-fidelity signal acquisition. Thin conductive polymer film is regarded as an ideal interface; however, it is very challenging to simultaneously balance mechanical robustness and opto-electrical property.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
Constructing a bilayer system with defined twist angles is an effective way to engineer the physical properties of two-dimensional (2D) materials, opening up a new research area of twistronics. How to achieve high-quality bilayer 2D materials in a controlled and mass production way is of primary importance to this emerging area. In this work, we present a strategy for the large-scale fabrication of twisted bilayer molybdenum disulfide (MoS) through photolithography patterning and folding of single-crystal monolayer MoS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Epidermal electronics is regarded as the next-generation technology, and graphene is a promising electrode, which is a key building block of such devices. However, graphene has a tendency to crack at small strains with a rapidly increased resistance upon stretching. Here, to enable graphene applicable in epidermal electronics, we designed a novel graphene structure that is molybdenum chloride (MoCl)-intercalated few-layer graphene (Mo-FLG) fabricated in a confined environment.
View Article and Find Full Text PDFThe economic dependency on fossil fuels and the resulting effects on climate and environment have put more focus on finding alternative renewable sources (e.g. lignocellulose) for the production of fuels and chemicals.
View Article and Find Full Text PDFAs the most representative of lignocellulosic materials, corn stalk (CS) will be a great candidate to produce xylo-oligosaccharides (XOS). Owing to the high impurity content of the XOS produced by directly enzymatic hydrolysis of xylan extracted from CS, subsequent refining steps are essential. The present study was aimed to investigate desorption during ethanol elution to improve the quality and antioxidant activity of XOS from CS.
View Article and Find Full Text PDF