Publications by authors named "Xiaohui Geng"

Article Synopsis
  • - The study examined the impact of local industrial air pollution, specifically fine particulate matter (PM), nitrogen dioxide (NO), and sulfur dioxide (SO), on asthma rates in children under 12 in Quebec, Canada.
  • - Researchers analyzed asthma onset cases across 1282 small areas over several years and utilized a statistical model to evaluate the relationship between pollution levels and new asthma cases while adjusting for factors like income and environment.
  • - The findings indicated that higher concentrations of industrial pollutants correlate with increased rates of childhood asthma, suggesting that improvements in air quality can potentially reduce asthma onset in local communities.
View Article and Find Full Text PDF

5-hydroxytryptamine 2A (5-HT2A) receptor is emerging as an important target for numerous psychoactive drugs due to its imperative roles in psychological diseases. In fact, multiple 5-HT2A receptor antagonists were developed to treat numerous psychiatric disorders, however, their clinical outcome was far from ideal probably due to a blurry information of the exact interaction modes between the receptor and its antagonists. Impressively, with a recent release of its crystal structure, we carefully analyzed the receptor-ligand interactions with Protein Contacts Atlas, structure-based pharmacophore models, and molecular dynamics (MD) simulations to sum up the chemical features for antagonists interacting with 5-HT2A receptor.

View Article and Find Full Text PDF

Stearyl coenzyme A desaturase enzyme 1 (SCD1) is a key enzyme that catalyzes the conversion of saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA) and plays a vital role in lipid metabolism of tumor cells. SCD1 is overexpressed in a variety of malignant tumors, and its related inhibitors showed significant anti-tumor activity in vitro and in vivo experiments, which is a new target for tumor therapy. The focus of this study is to identify novel SCD1 inhibitors from natural products through computer simulations.

View Article and Find Full Text PDF

For a long time, the structural basis of TXA2 receptor is limited due to the lack of crystal structure information, till the release of the crystal structure of TXA2 receptor, which deepens our understanding about ligand recognition and selectivity mechanisms of this physiologically important receptor. In this research, we report the successful implementation in the discovery of an optimal pharmacophore model of human TXA2 receptor antagonists through virtual screening. Structure-based pharmacophore models were generated based on two crystal structures of human TXA2 receptor (PDB entry 6IIU and 6IIV).

View Article and Find Full Text PDF

We reviewed epidemiologic studies of the association between exposure to air pollution from industries and asthma-related outcomes in childhood. We searched bibliographic databases and reference lists of relevant articles to identify studies examining the association between children's exposure to air pollution from industrial point-sources and asthma-related outcomes, including asthma, asthma-like symptoms, wheezing, and bronchiolitis. We extracted key characteristics of each study and when appropriate we performed a random-effects meta-analysis of results and quantified heterogeneity ( ).

View Article and Find Full Text PDF

The mitochondrial calcium uniporter (MCU) is the critical protein of the inner mitochondrial membrane that is the primary mediator for calcium uptake into the mitochondrial matrix. Herein we built the optimal homology model of human MCU which was refined through all-atom molecular dynamics simulation. Then, the binding mode of known inhibitor was predicted through molecular docking method, along with molecular dynamics simulation and binding free energy calculation to verify the docking result and stability of the protein-inhibitor complex.

View Article and Find Full Text PDF

A sensitive and disposable electrochemical impedance biosensor to detect Japanese encephalitis virus (JEV) was developed based on a gold nanoparticle (AuNP)-modified screen-printed carbon electrode (SPCE). A biosensor was fabricated through covalent grafting of a mixed self-assembled monolayer on AuNPs with a specific antibody. To detect JEV and achieve signal amplification, the horseradish peroxidase (HRP)-labeled second antibody was linked to the biosensor through a sandwich immunity reaction.

View Article and Find Full Text PDF

A signal-off impedimetric immune-biosensor based on gold nanoparticle (AuNP)-mediated electron transfer (ET) across a self-assembled monolayer (SAM) was the developed for highly sensitive detection of Escherichia coli O157:H7 bacteria. The biosensor was fabricated by covalently grafting an anti-Escherichia coli O157:H7 antibody onto SAM-modified gold electrodes. Following bacterial capture, the sensor was further modified by the gold nanoparticles (AuNPs).

View Article and Find Full Text PDF