Background: Noninvasive and functional imaging of the focal liver lesion (FLL) vasculature at microscopic scales is clinically challenging. We investigated the feasibility of using super-resolution ultrasound (SR-US) imaging for visualizing and quantifying the microvasculature of intraparenchymal FLLs.
Methods: Patients with FLLs between June 2022 and February 2023 were prospectively screened.
Mechanical scanning with a single transducer is an alternative method for high-frequency ultrasound imaging, which is simple in structure, convenient to implement, and low in cost. However, traditional mechanical scanning ultrasonic imaging introduces additional Doppler shift due to the movement of the transducer, which brings a challenge for blood velocity measurement. An improved mechanical scanning system for high-frequency ultrasonic color Doppler flow imaging is developed in this paper.
View Article and Find Full Text PDFHigh-frequency ultrasound has developed rapidly in clinical fields such as cardiovascular, ophthalmology, and skin with its high imaging resolution. However, the development of multi-elements high-frequency ultrasonic transducers and multi-channel high-frequency ultrasound imaging systems is extremely challenging. Here, a high-frequency ultrasound imaging system based on mechanical scanning was proposed in this paper.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2022
High-frequency endoscopic ultrasound (HFEUS) imaging is an important tool commonly used in clinical practice for imaging hollow organs. The virtual source synthetic aperture (VSSA) method is effective in improving the imaging quality of HFEUS. However, interference from the motor control unit severely affects the accuracy of the conventional delay and sum (DAS) method, thus compromising the effectiveness of VSSA.
View Article and Find Full Text PDFInsufficient imaging penetration and large data acquisition are two of the major challenges of high-frequency ultrasound imaging. Based on the good autocorrelation properties of chirp signal and the feasibility of using compressed sensing theory to reconstruct high-quality ultrasound images with low sampling requirements, this paper proposed a chirp coded excitation combined with compressed sensing (CCE-CS) technique for high-frequency endoscopic ultrasound (HFEUS) imaging. The feasibility of the method was verified by a brief theoretical analysis, and the relevant parameters were selected and analyzed according to the actual engineering situation.
View Article and Find Full Text PDFThis paper reports on the fabrication of 1-3 piezocomposite with hexagonal pillars for high frequency ultrasonic transducer based on the cold ablation technique. The piezocomposite with hexagonal pillars was designed, simulated, and fabricated using an ultraviolet picosecond laser. It performs better than the piezocomposite with other pillar shapes like square.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2021
In this article, a PZT/Epoxy 1-3 piezoelectric composite based on picosecond laser etching technology is developed for the fabrication of high-frequency ultrasonic transducer. The design, fabrication, theoretical analysis, and performance of the piezocomposite and transducer are presented and discussed. According to the test results, the area of the PZT pillar is [Formula: see text], the average width of the kerf is [Formula: see text], and the thickness of the piezocomposite is [Formula: see text].
View Article and Find Full Text PDFAs a promising energy converter, the requirement for miniaturization and high-accuracy of triboelectric nanogenerators always remains urgent. In this work, a micro triboelectric ultrasonic device was developed by integrating a triboelectric nanogenerator and micro-electro-mechanical systems technology. To date, it sets a world record for the smallest triboelectric device, with a 50 µm-sized diaphragm, and enables the working frequency to be brought to megahertz.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2021
Chirp coded excitation is an effective method to improve the signal-to-noise ratio (SNR) and penetration depth of high-frequency endoscopic ultrasound (EUS) imaging. In coded excitation, pulse compression is applied to compress the elongated coded signals into a short pulse, which determines the final imaging performance, including spatial resolution and SNR. However, with the current pulse compression methods, it is hard to get high performance in the peak sidelobe level (PSL), image contrast, and axial resolution at the same time.
View Article and Find Full Text PDFPhotoacoustic (PA) imaging is a hybrid imaging technique that can provide both structural and functional information of biological tissues. Due to limited permissible laser energy deposited on tissues, highly sensitive PA imaging is required. Here, we developed a 20 MHz lead zirconium titanate (PZT) transducer (1.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2019
Based on the Fresnel half-wave band interference and laser engraving, a high-frequency self-focusing piezoelectric composite ultrasound transducer (FPCUT) is presented in this article. The theoretical analysis was performed based on the concept of constructive interference of acoustic waves and the electromechanical response of piezoelectric composites. The calculated and simulation results showed that the FPCUT combined the advantages of the composite transducer and the plate self-focusing transducer and can achieve high electromechanical coupling coefficient (>0.
View Article and Find Full Text PDFIEEE Trans Med Imaging
May 2018
Optoacoustic (photoacoustic) endoscopy has shown potential to reveal complementary contrast to optical endoscopy methods, indicating clinical relevance. However operational parameters for accurate optoacoustic endoscopy must be specified for optimal performance. Recent support from the EU Horizon 2020 program ESOTRAC to develop a next-generation optoacoustic esophageal endoscope directs the interrogation of the optimal frequency required for accurate implementation.
View Article and Find Full Text PDFDue to the small aperture of blood vessel, a considerable disadvantage to current intravascular ultrasound (IVUS) imaging transducers is that their lateral imaging resolution is much lower than their axial resolution. To solve this problem, a single-element, 50 MHz, 0.6 mm diameter IVUS transducer with a geometric focus at 3 mm was proposed in this paper.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2016
Based on the Fresnel half-wave band interference, a micromachined self-focusing piezoelectric composite ultrasound transducer was proposed in this paper. The theoretical analysis was deduced based on the concept of constructive interference of acoustic waves and electromechanical response of piezoelectric composites. The calculated and simulation results showed that it combined the advantages of composite transducer and plate self-focusing transducer, and can achieve high electromechanical coupling coefficient, low acoustic impedance, high intensity, short focal length and micro size.
View Article and Find Full Text PDFBased on the basic imaging theory of the temporally and spatially mixed modulated polarization interference imaging spectrometer (TSMPIIS), a method of interferogram obtaining and processing under polychromatic light is presented. Especially, instead of traditional Fourier transform spectroscopy, according to the unique imaging theory and OPD variation of TSMPIIS, the spectrum is reconstructed respectively by wavelength. In addition, the originally experimental interferogram obtained by TSMPIIS is processed in this new way, the satisfying result of interference data and reconstructed spectrum prove that the method is very precise and feasible, which will great improve the performance of TSMPIIS.
View Article and Find Full Text PDFWe present a mathematical method used to determine the spectrum detected by a birefringence interference imaging spectrometer (BIIS). The reconstructed spectrum has good precision over a wide spectral range, 0.4-1.
View Article and Find Full Text PDF