Publications by authors named "Xiaohua Che"

Azimuthal acoustic logging can survey the downhole formation more accurately, and the acoustic source is the crucial component of the downhole acoustic logging tool with azimuthal resolution characteristics. To realize downhole azimuthal detection, assembling multiple transmitting piezoelectric vibrators in the circumferential direction is necessary, and the performance of azimuthal-transmitting piezoelectric vibrators needs attention. However, effective heating test and matching methods are not yet developed for downhole multi-azimuth transmitting transducers.

View Article and Find Full Text PDF

In order to realize rapid and accurate evaluation of drinking water quality, a small-scale water quality detection instrument is designed in this paper that can detect two representative water quality parameters: the permanganate index and total dissolved solids (TDS). The permanganate index measured by the laser spectroscopy method can achieve the approximate value of the organic matter in water, and the TDS measured by the conductivity method can obtain the approximate value of the inorganic matter in water. In addition, to facilitate the popularization of civilian applications, the evaluation method of water quality based on the percent-scores proposed by us is presented in this paper.

View Article and Find Full Text PDF

Ultrasonic imaging logging can visually identify the location, shape, dip angle and orientation of fractures and holes. The method has not been effectively applied in the field; one of the prime reasons is that the results of physical simulation experiments are insufficient. The physical simulation of fracture and hole response in the laboratory can provide a reference for the identification and evaluation of the underground geological structure.

View Article and Find Full Text PDF

Considering the spatial distribution of laser beams and phonon waves, the SRS coupling wave equations in the transient regime are derived and normalized for the first time. The synchronously pumped solid-state Raman laser is simulated numerically to investigate the influences of the cavity length detuning, output coupling rate, dispersion, Raman gain and dephasing time of Raman mode on laser performances. It is found that the intensive pulse compression of first Stokes laser in synchronously pumped solid-state Raman laser stems from pulse width gain narrowing and intensity oscillation effects.

View Article and Find Full Text PDF