Stem cell-derived blood vessel organoids are embedded in extracellular matrices to stimulate vessel sprouting. Although vascular organoids in 3D collagen I-Matrigel gels are currently available, they are primarily capillaries composed of endothelial cells (ECs), pericytes, and mesenchymal stem-like cells, which necessitate mature arteriole differentiation for neovascularization. In this context, the hypothesis that matrix viscoelasticity regulates vascular development is investigated in 3D cultures by encapsulating blood vessel organoids within viscoelastic gelatin/β-CD assembly dynamic hydrogels or methacryloyl gelatin non-dynamic hydrogels.
View Article and Find Full Text PDFSmall-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis.
View Article and Find Full Text PDFAirborne pathogens, such as the world-spreading severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause global epidemics via transmission through the respiratory pathway. It is of great urgency to develop adequate interventions that can protect individuals against future pandemics. This study presents a nasal spray that forms a polysaccharide "armor" on the cell surface through the layer-by-layer self-assembly (LBL) method to minimize the risk of virus infection.
View Article and Find Full Text PDFConductive polymers (CPs) are promising biomaterials to address signal connection at biointerfaces for tissue regeneration. However, regulating material microstructure at the subcellular scale to provide a more seamless interface between conductive substrates and cells remains a great challenge. Here, we demonstrate that chemical factors and enzyme-carried subcellular structures at lesion site provide a natural bioreactor to self-assemble conductive microvesicles (CMVs) for improving bioelectrical signal reconstruction.
View Article and Find Full Text PDFSilk fibroin (SF) from is a natural polymer with exceptional biocompatibility, low immunogenicity, and ease of processability. SF-based hydrogels have been identified as one of the most attractive candidate scaffolds for tissue engineering and can be fabricated through various physical or chemical crosslinking approaches. However, conventional SF hydrogels may suffer from several major drawbacks, such as structural inhomogeneity, poor mechanical properties or utilization of cytotoxic reagents.
View Article and Find Full Text PDFJ Mater Sci Mater Med
November 2020
Due to their excellent mechanical strength and biocompatibility, silk fibroin(SF) hydrogels can serve as ideal scaffolds. However, their slow rate of natural degradation limits the space available for cell proliferation, which hinders their application. In this study, litchi-like calcium carbonate@hydroxyapatite (CaCO@HA) porous microspheres loaded with proteases from Streptomyces griseus (XIV) were used as drug carriers to regulate the biodegradation rate of SF hydrogels.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2020
Surface tension-driven assembly is a simple routine used in modular tissue engineering to create three-dimensional (3D) biomimetic tissues with desired structural and biological characteristics. A major bottleneck for this technology is the lack of suitable hydrogel materials to meet the requirements of the assembly process and tissue regeneration. Identifying specific requirements and synthesizing novel hydrogels will provide a versatile platform for generating additional biomimetic functional tissues using this approach.
View Article and Find Full Text PDFThe regeneration of load-bearing soft tissues has long driven the research and development of bioactive hydrogels. A major challenge facing the application of hydrogels to load-bearing tissues is the development of hydrogels with appropriate biological functionality and biomechanical stability that closely mimic the host tissue. In this paper, we describe a newly synthesized cell-laden interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) that was formed via sequential sonication and photocrosslinking.
View Article and Find Full Text PDF