Publications by authors named "Xiaoguo Suo"

Calcium oxalate (CaOx) crystals are the main constituents of renal crystals in humans and induce tubular lumen damage in renal tubules, leading to renal calcium deposition and kidney stone formation. Oxidative stress and inflammation play important roles in regulating calcium oxalate-induced injury. Here, we evaluated the efficacy in inhibiting oxidation and inflammation of pectinolinarigenin, a biologically active natural metabolite, in CaOx nephrocalcinosis and further explored its targets of action.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a clinical syndrome characterized by persistent renal function decline. Renal fibrosis is the main pathological process in CKD, but an effective treatment does not exist. Stratifin (SFN) is a highly-conserved, multi-function soluble acidic protein.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies a specific circular RNA, circIRF2, which has decreased levels during liver fibrogenesis but is restored during recovery, suggesting its potential role in liver fibrosis.* -
  • Functional analyses show that increasing circIRF2 helps reduce liver fibrosis and activate healing processes, while reducing it hampers liver injury repair and inflammation resolution.* -
  • The research highlights how methylation modifications impact circIRF2's stability and suggests that circIRF2 could serve as a potential marker or target for treating liver fibrosis.*
View Article and Find Full Text PDF

Background And Purpose: Necroptosis plays an essential role in acute kidney injury and is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed lineage kinase domain-like pseudokinase (MLKL). A novel RIPK3 inhibitor, compound 42 (Cpd-42) alleviates the systemic inflammatory response. The current study was designed to investigate whether Cpd-42 exhibits protective effects on acute kidney injury and reveal the underlying mechanisms.

View Article and Find Full Text PDF

Calcium oxalate (CaOx) crystals, as the predominant component of human kidney stones, can trigger excessive cell death and inflammation of renal tubular epithelial cells, involved in the pathogenesis of nephrocalcinosis. Necroptosis mediated by receptor-interacting protein kinase 3 (RIPK3) serves a critical role in the cytotoxicity of CaOx crystals. Here, we assessed the therapeutic potential of a novel RIPK3 inhibitor, compound 42 (Cpd-42), for CaOx nephrocalcinosis by comparison with dabrafenib, a classic RIPK3 inhibitor.

View Article and Find Full Text PDF
Article Synopsis
  • The outbreak of SARS-CoV-2 since late 2019 has led to a pneumonia epidemic affecting 236 countries, causing significant public health issues and multiple organ failures, particularly in critical patients.
  • Previous coronaviruses, including SARS-CoV and MERS-CoV, have also shown a strong link to kidney damage in affected patients.
  • This review focuses on summarizing the epidemiological and clinical features of these three pandemics, analyzing the mechanisms by which COVID-19 affects kidney health, and discussing the causes and prevention of secondary kidney diseases related to SARS-CoV-2.
View Article and Find Full Text PDF

Acute kidney injury (AKI) is a clinical syndrome that is defined as a sudden decline in renal function and characterized by inflammation and programmed cell death of renal tubular epithelial cells. Necroptosis is a form of regulated cell death that requires activation of receptor interacting protein kinase 3 (RIPK3) and its phosphorylation of the substrate MLKL. RIPK3 plays an important role in acute kidney injury, and hence developing its inhibitors is considered as one of the promising strategies aimed at prevention and treatment of AKI.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is an increasing public health concern, characterized by a reduced glomerular filtration rate and increased urinary albumin excretion. Renal fibrosis is an important pathological condition in patients with CKD. In this study, we evaluated the anti-fibrotic effect of Cpd-0225, a novel transforming growth factor-β (TGF-β) type I receptor (also known as ALK5) inhibitor, in vitro and in vivo, by comparing its effect with that of SB431542, a classic ALK5 inhibitor, which has not entered the clinical trial stage owing to multiple side effects.

View Article and Find Full Text PDF

Hepatic fibrosis is an essential pathology of multiple chronicliverdiseases. The aim of this study was to investigate the role of miR-301a-3p in hepatic fibrosis. We found that miR-301a-3p was upregulated in hepatic fibrosis patients and in culture-activated human hepatic stellate cells (HSCs).

View Article and Find Full Text PDF

Renal fibrosis, a common feature of chronic kidney disease, causes the progressive loss of renal function, in which TGF-β plays a critical role. In this study, we found that expression levels of TGF-β and its receptor 1 (TGF-βR1) were both significantly increased in obstructive fibrosis kidneys. AZ12601011 is a small molecular inhibitor of TGF-βR1; however, its therapeutic potential for renal fibrosis remains unclear.

View Article and Find Full Text PDF

The role of -methyladenosine (m6A) modifications in renal diseases is largely unknown. Here, we characterized the role of -adenosine-methyltransferase-like 3 (METTL3), whose expression is elevated in renal tubules in different acute kidney injury (AKI) models as well as in human biopsies and cultured tubular epithelial cells (TECs). silencing alleviated renal inflammation and programmed cell death in TECs in response to stimulation by tumor necrosis factor-α (TNF-α), cisplatin, and lipopolysaccharide (LPS), whereas overexpression had the opposite effects.

View Article and Find Full Text PDF

Stratifin (SFN) is a member of the 14-3-3 family of highly conserved soluble acidic proteins, which regulates a variety of cellular activities such as cell cycle, cell growth and development, cell survival and death, and gene transcription. Acute kidney injury (AKI) is prevalent disorder characterized by inflammatory response, oxidative stress, and programmed cell death in renal tubular epithelial cells, but there is still a lack of effective therapeutic target for AKI. In this study, we investigated the role of SFN in AKI and the underlying mechanisms.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Chloranthus serratus is a traditional Chinese medicine for treating arthritis and bruises.

Aim Of The Study: To investigate the dose-effect relationship and molecular mechanisms of the water extract of C. serratus roots (WECR) in lipopolysaccharide (LPS)-stimulated RAW264.

View Article and Find Full Text PDF

Background: Chloranthus serratus (Chloranthaceae) has been used to treat bruises, rheumatoid and bone pain. However, the anti-inflammatory mechanisms of C. serratus in vitro have not been fully elucidated.

View Article and Find Full Text PDF