Publications by authors named "Xiaoguo Luo"

In the field of intelligent connected vehicles, the precise and real-time identification of speed bumps is critically important for the safety of autonomous driving. To address the issue that existing visual perception algorithms struggle to simultaneously maintain identification accuracy and real-time performance amidst image distortion and complex environmental conditions, this study proposes an enhanced lightweight neural network framework, YOLOv5-FPNet. This framework strengthens perception capabilities in two key phases: feature extraction and loss constraint.

View Article and Find Full Text PDF