Background: Newer targeted agents are increasingly used in combination chemotherapy regimens with enhanced survival and improved toxicity profile. Taxols, such as paclitaxel, independently potentiate tumor destruction via apoptosis and are used as first line therapy in patients with advanced non-small cell lung cancer (NSCLC). Procaspase-3-activating compound-1 (PAC-1) is a novel proapoptotic agent that directly activates procaspase-3 (PC-3) to caspase-3, leading to apoptosis in human lung adenocarcinoma cells.
View Article and Find Full Text PDFBackground: The hallmark of lung ischemia-reperfusion injury (IRI) is the production of reactive oxygen species (ROS), and the resultant oxidant stress has been implicated in apoptotic cell death as well as subsequent development of inflammation. Dietary flaxseed (FS) is a rich source of naturally occurring antioxidants and has been shown to reduce lung IRI in mice. However, the mechanisms underlying the protective effects of FS in IRI remain to be determined.
View Article and Find Full Text PDFThe resistance of inositol 1,4,5-trisphosphate receptor (IP3R)-deficient cells to multiple forms of apoptosis demonstrates the importance of IP3-gated calcium (Ca2+) release to cellular apoptosis. However, the specific upstream biochemical events leading to IP3-gated Ca2+ release during apoptosis induction are not known. We have shown previously that the cyclin-dependent kinase 1/cyclin B (cdk1/CyB or cdc2/CyB) complex phosphorylates IP3R1 in vitro and in vivo at Ser421 and Thr799.
View Article and Find Full Text PDFCalcium (Ca2+) release from the endoplasmic reticulum (ER) controls numerous cellular functions including proliferation, and is regulated in part by inositol 1,4,5-trisphosphate receptors (IP3Rs). IP3Rs are ubiquitously expressed intracellular Ca2+-release channels found in many cell types. Although IP3R-mediated Ca2+ release has been implicated in cellular proliferation, the biochemical pathways that modulate intracellular Ca2+ release during cell cycle progression are not known.
View Article and Find Full Text PDFWe investigated the role of the orphan nuclear receptor farnesoid X receptor (FXR) in the regulation of cholesterol 7alpha-hydroxylase (CYP7A1), using an in vivo rabbit model, in which the bile acid pool, which includes high affinity ligands for FXR, was eliminated. After 7 days of bile drainage, the enterohepatic bile acid pool, in both New Zealand White and Watanabe heritable hyperlipidemic rabbits, was depleted. CYP7A1 activity and mRNA levels increased while FXR was deactivated as indicated by reduced FXR protein and changes in the expression of target genes that served as surrogate markers of FXR activation in the liver and ileum, respectively.
View Article and Find Full Text PDF