Publications by authors named "Xiaoguang Dong"

Continuously monitoring human airway conditions is crucial for timely interventions, especially when airway stents are implanted to alleviate central airway obstruction in lung cancer and other diseases. Mucus conditions, in particular, are important biomarkers for indicating inflammation and stent patency but remain challenging to monitor. Current methods, reliant on computational tomography imaging and bronchoscope inspection, pose risks due to radiation and lack the ability to provide continuous real-time feedback outside of hospitals.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a small, flexible capsule for sampling liquids in tight spaces, which could help monitor health and detect diseases early.
  • The capsule uses innovative features like magnetic valves and superabsorbent materials, allowing it to collect fluids without invasive techniques and be controlled remotely.
  • Demonstrations showed the capsules effectively navigate and sample body fluids in a lab setting using ultrasound and X-ray imaging, paving the way for advanced diagnostic technologies.
View Article and Find Full Text PDF

Enabling minimally invasive and precise control of liquid release in dental implants is crucial for therapeutic functions such as delivering antibiotics to prevent biofilm formation, infusing stem cells to promote osseointegration, and administering other biomedicines. However, achieving controllable liquid cargo release in dental implants remains challenging due to the lack of wireless and miniaturized fluidic control mechanisms. Here wireless miniature pumps and valves that allow remote activation of liquid cargo delivery in dental implants, actuated and controlled by external magnetic fields (<65 mT), are reported.

View Article and Find Full Text PDF

Artificial cilia integrating both actuation and sensing functions allow simultaneously sensing environmental properties and manipulating fluids in situ, which are promising for environment monitoring and fluidic applications. However, existing artificial cilia have limited ability to sense environmental cues in fluid flows that have versatile information encoded. This limits their potential to work in complex and dynamic fluid-filled environments.

View Article and Find Full Text PDF

Wirelessly actuated miniature soft robots actuated by magnetic fields that can overcome gravity by climbing soft and wet tissues are promising for accessing challenging enclosed and confined spaces with minimal invasion for targeted medical operation. However, existing designs lack the directional steerability to traverse complex terrains and perform agile medical operations. Here we propose a rod-shaped millimeter-size climbing robot that can be omnidirectionally steered with a steering angle up to 360 degrees during climbing beyond existing soft miniature robots.

View Article and Find Full Text PDF

Implanted electronic sensors, compared with conventional medical imaging, allow monitoring of advanced physiological properties of soft biological tissues continuously, such as adhesion, pH, viscoelasticity, and biomarkers for disease diagnosis. However, they are typically invasive, requiring being deployed by surgery, and frequently cause inflammation. Here we propose a minimally invasive method of using wireless miniature soft robots to in situ sense the physiological properties of tissues.

View Article and Find Full Text PDF

Objective: To explore the relationship of hypertriglyceridemic waist phenotype (HTWP) with initial neurological severity and etiologic subtypes in patients with acute ischemic stroke.

Methods: The data for this study were collected from hospitalized patients within 72 h of acute ischemic stroke onset at the Department of Neurology of the Affiliated Hospital of Beihua University from 1 July 2020 to 30 June 2022. The initial neurological severity was assessed by the National Institute of Health Stroke Scale (NIHSS) on the day of admission: NIHSS <6 was defined as mild stroke, and NIHSS ≥6 as moderate to severe stroke.

View Article and Find Full Text PDF

The fluid manipulation capabilities of current artificial cilia are severely handicapped by the inability to reconfigure near-surface flow on various static or dynamically deforming three-dimensional (3D) substrates. To overcome this challenge, we propose an electrically driven soft-robotic ciliated epidermis with multiple independently controlled polypyrrole bending actuators. The beating kinematics and the coordination of multiple actuators can be dynamically reconfigured to control the strength and direction of fluid transportation.

View Article and Find Full Text PDF

Wireless miniature soft actuators are promising for various potential high-impact applications in medical, robotic grippers, and artificial muscles. However, these miniature soft actuators are currently constrained by a small output force and low work capacity. To address such challenges, a miniature magnetic phase-change soft composite actuator is reported.

View Article and Find Full Text PDF

Wireless soft-bodied robots at the millimeter scale allow traversing very confined unstructured terrains with minimal invasion and safely interacting with the surrounding environment. However, existing untethered soft millirobots still lack the ability of climbing, reversible controlled surface adhesion, and long-term retention on unstructured three-dimensional (3D) surfaces, limiting their use in biomedical and environmental applications. Here, we report a fundamental peeling-and-loading mechanism to allow untethered soft-bodied robots to climb 3D surfaces by using both the soft-body deformation and whole-body motion of the robot under external magnetic fields.

View Article and Find Full Text PDF

Magnetically driven wireless miniature devices have become promising recently in healthcare, information technology, and many other fields. However, they lack advanced fabrication methods to go down to micrometer length scales with heterogeneous functional materials, complex three-dimensional (3D) geometries, and 3D programmable magnetization profiles. To fill this gap, we propose a molding-integrated direct laser writing-based microfabrication approach in this study and showcase its advanced enabling capabilities with various proof-of-concept functional microdevice prototypes.

View Article and Find Full Text PDF

This study discriminated fatty acid profile and flavor characteristics of Beijing You Chicken (BYC) as a precious local breed and Dwarf Beijing You Chicken (DBYC) eggs. Fatty acid profile and flavor characteristics were analyzed to identify differences between BYC and DBYC eggs. Four classification algorithms were used to build classification models.

View Article and Find Full Text PDF

The present study was conducted on three commercial laying breeder strains to evaluate differences of sensory qualities, including texture, smell, and taste parameters. A total of 140 eggs for each breed were acquired from Beinong No.2 (B) laying hens, Hy-Line Brown (H) laying hens, and Wuhei (W) laying hens.

View Article and Find Full Text PDF

Purpose: To determine the over 10-year follow-up outcomes and analyse the reason for failure in patients who underwent black diaphragm intraocular lens (IOL) implantation for the management of traumatic aniridia.

Methods: Fifty-three patients underwent black diaphragm IOL implantation for the treatment of traumatic aniridia from September 1998 to August 2007. 33 eyes of 33 patients were enrolled in our study, and the mean follow-up period was 185.

View Article and Find Full Text PDF

Coordinated nonreciprocal dynamics in biological cilia is essential to many living systems, where the emergentmetachronal waves of cilia have been hypothesized to enhance net fluid flows at low Reynolds numbers (). Experimental investigation of this hypothesis is critical but remains challenging. Here, we report soft miniature devices with both ciliary nonreciprocal motion and metachronal coordination and use them to investigate the quantitative relationship between metachronal coordination and the induced fluid flow.

View Article and Find Full Text PDF

Magnetically actuated miniature soft robots are capable of programmable deformations for multimodal locomotion and manipulation functions, potentially enabling direct access to currently unreachable or difficult-to-access regions inside the human body for minimally invasive medical operations. However, magnetic miniature soft robots are so far mostly based on elastomers, where their limited deformability prevents them from navigating inside clustered and very constrained environments, such as squeezing through narrow crevices much smaller than the robot size. Moreover, their functionalities are currently restricted by their predesigned shapes, which is challenging to be reconfigured in situ in enclosed spaces.

View Article and Find Full Text PDF

The functionalities of the untethered miniature swimming robots significantly decrease as the robot size becomes smaller, due to limitations of feasible miniaturized on-board components. Here we propose an untethered jellyfish-inspired soft millirobot that could realize multiple functionalities in moderate Reynolds number by producing diverse controlled fluidic flows around its body using its magnetic composite elastomer lappets, which are actuated by an external oscillating magnetic field. We particularly investigate the interaction between the robot's soft body and incurred fluidic flows due to the robot's body motion, and utilize such physical interaction to achieve different predation-inspired object manipulation tasks.

View Article and Find Full Text PDF

Alcohol addiction can cause brain dysfunction and threatens both individuals and society. Recently, emerging studies have suggested the dysbiosis of gut microbiota induced by alcohol exposure contributed to the reward-seeking behaviors as well as anxiety, depression. In the current study, animal model of chronic alcohol exposure was established by providing mice with gradient concentrations of alcohol from 2%, 4%, and 6% to 8% for 21 days.

View Article and Find Full Text PDF

Alcohol addiction can cause brain dysfunction and many other diseases. Recently, increasing evidences have suggested that gut microbiota plays a vital role in regulating alcohol addiction. However, the exact mechanism has not yet been elucidated.

View Article and Find Full Text PDF

Purpose: Age-related macular degeneration (AMD) can cause irreversible vision loss leading to blindness. We aim to evaluate the efficacy and safety of intravitreal injections of 0.5 mg conbercept, a new anti-vascular endothelial growth factor (anti-VEGF) drug, for treatment of AMD on a schedule more manageable for patients.

View Article and Find Full Text PDF

Rotenone is a common pesticide and has been reported as one of the risk factors for Parkinson disease. Rotenone can cause neuronal death or apoptosis through inducing oxidative injury and inhibiting mitochondrial function. As a natural polyphenolic compound, resveratrol possesses the antioxidant capacity and neuroprotective effect.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a kind of neurodegenerative disorder associated with age. Investigations suggest that amyliod-β (Aβ) is implicated in the pathogenesis of AD. The accumulation of Aβ in the brain causes oxidative stress and synaptic toxicity, leads to synaptic dysfunction and neuronal death.

View Article and Find Full Text PDF

Unlabelled: Tenderness is an important parameter for evaluating textural properties of beef. Viscoelasticity is a comprehensive property of viscosity and elasticity. Detection of beef tenderness based on beef viscoelasticity could avoid sample destruction inherent to the traditional evaluation method.

View Article and Find Full Text PDF

Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials.

View Article and Find Full Text PDF

Aim: To report the fungal organisms, clinical features, surgical treatment strategies, and outcomes of patients with culture-proven exogenous fungal endophthalmitis (EFE) secondary to keratitis, and evaluate the role of surgery in the treatment.

Methods: The clinical records of 27 patients (27 eyes) with culture-proven EFE resulting from fungal keratitis treated at Shandong Eye Institute from January 2007 to January 2015 were retrospectively reviewed. Information about fungal culture results, clinical features, surgical procedures, and final visual acuity was obtained.

View Article and Find Full Text PDF