Publications by authors named "Xiaogai Wang"

The shortage of phosphorus (P) as a resource represents a major challenge for the sustainable development of agriculture. Manure has a high P content and is a potential substitute for mineral P fertilizers. However, little is known about the effects on soil P availability and soil microbial P transformation of substituting manure for mineral P fertilizers.

View Article and Find Full Text PDF

Excessive use of chemical fertilizers to meet the global food demand has caused extensive environmental pollution. Microalgae can be used to enhance agricultural crop production as a potentially sustainable and eco-friendly alternative. In this study, M9V and S3 were isolated from the soil and mass-cultured for use as microalgal fertilizers.

View Article and Find Full Text PDF

Globally soil salinity is one of the most devastating environmental stresses affecting agricultural systems and causes huge economic losses each year. High soil salinity causes osmotic stress, nutritional imbalance and ion toxicity to plants and severely affects crop productivity in farming systems. Freezing saline water irrigation and plastic mulching techniques were successfully developed in our previous study to desalinize costal saline soil.

View Article and Find Full Text PDF

Soil salinization is one of the major land degradation processes that decreases soil fertility and crop production worldwide. In this study, a long-term coastal saline soil remediation experiment was conducted with three salt-tolerant plant species: Mill. (LCM), Lour.

View Article and Find Full Text PDF

The binding of 4'-azido-2'-deoxyfluoroarabinocytidine (FNC) or analogs (cytidine and 5'-cytidylate monophosphate) to bovine serum albumin (BSA) was investigated by fluorescence, UV-vis absorption spectroscopy and molecular modeling. The three compounds quenched the intrinsic fluorescence of BSA and the results revealed the presence of static quenching mechanism. The positive ΔH and positive ΔS for the systems suggested that the hydrophobic forces stabilized the interaction between the compounds and protein.

View Article and Find Full Text PDF

This work studied the interaction of human hemoglobin (HHb) with aminophylline, acefylline, caffeine, theophylline and diprophylline systematically by UV-vis absorption spectroscopy and fluorescence spectroscopy in combination with molecular modeling. Five alkaloids caused the fluorescence quenching of HHb by the formation of alkaloids-HHb complex. The binding constants and thermodynamic parameters were obtained.

View Article and Find Full Text PDF

The interactions between pepsin and four alkaloids, including caffeine (Caf), aminophylline (Ami), acefylline (Ace), diprophylline (Dip), were investigated by fluorescence, UV-visible absorption, resonance light scattering, synchronous fluorescence spectroscopy and 3D spectroscopy under mimic physiological conditions. The results revealed that Caf (Ami/Ace/Dip) caused the fluorescence quenching of pepsin by the formation of Caf (Ami/Ace/Dip)-pepsin complex. The binding constants and thermodynamic parameters at three different temperatures, the binding locality and the binding power were obtained.

View Article and Find Full Text PDF