Publications by authors named "Xiaofu Wang"

Introduction: Chronic liver disease is driven by a prolonged wound healing response leading to fibrogenesis, potentially progressing to cirrhosis. Hepatic stellate cells (HSCs) are the primary cells driving hepatic fibrosis because they are major producers of extracellular matrix. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ΚB) pathway is a key regulator of inflammatory signaling, and survival of activated HSCs has been found to be NF-KB dependent.

View Article and Find Full Text PDF

Introduction: Genetically modified (GM) crops have been widely cultivated across the world and the development of rapid, ultrasensitive, visual multiplex detection platforms that are suitable for field deployment is critical for GM organism regulation.

Objective: In this study, we developed a novel one-pot system, termed MR-DCA (Multiplex RPA and Dual CRISPR assay), for the simultaneous detection of CaMV35S and NOS genetic targets in GM crops. This innovative approach combined Multiplex RPA (recombinase polymerase amplification) with the Dual CRISPR (clustered regularly interspaced short palindromic repeat) assay technique, to provide a streamlined and efficient method for GM crop detection.

View Article and Find Full Text PDF

The new generation of gene editing technologies, primarily based on CRISPR/Cas9 and its derivatives, allows for more precise editing of organisms. However, when the editing efficiency is low, only a small fraction of gene fragments is edited, leaving behind minimal traces and making it difficult to detect and evaluate the editing effects. Although a series of technologies and methods have been developed, they lack the ability for precise quantification and quantitative analysis of these products.

View Article and Find Full Text PDF

Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing.

View Article and Find Full Text PDF

Fluorescence dye-based loop-mediated isothermal amplification (LAMP) is a sensitive nucleic acid detection method, but is limited to single-plex detection and may yield non-specific signals. In this study, we propose a bifunctional probe-based real-time LAMP amplification method for single-plexed or multiplexed detection. The bifunctional probe is derived by modifying the 5' end of the fluorophore and an internal quencher on one of the LAMP primers; therefore, it can simultaneously be involved in the LAMP process and signal amplification.

View Article and Find Full Text PDF

Honey adulteration with exogenous syrup has become a common phenomenon, and current detection techniques that require large instruments are cumbersome and time-consuming. In this study, a simple and efficient method was developed by integrating the rapid extraction of nucleic acids (REMD) and recombinase polymerase amplification (RPA), known as REMD-RPA, for the rapid screening of syrup adulteration in honey. First, a rapid extraction method was developed to rapidly extract corn syrup DNA in five minutes to meet the requirements of PCR and RPA assays.

View Article and Find Full Text PDF

The gene editing technology represented by clustered rule-interspersed short palindromic repeats (CRISPR)/Cas9 has developed as a common tool in the field of biotechnology. Many gene-edited products in plant varieties have recently been commercialized. However, the rapid on-site visual detection of gene-edited products without instrumentation remains challenging.

View Article and Find Full Text PDF

Current research endeavors have focused on the combination of various isothermal nucleic acid amplification methods with CRISPR/Cas systems, aiming to establish a more sensitive and reliable molecular diagnostic approach. Nevertheless, most assays adopt a two-step procedure, complicating manual operations and heightening the risk of contamination. Efforts to amalgamate both assays into a single-step procedure have faced challenges due to their inherent incompatibility.

View Article and Find Full Text PDF

Introduction: Activated hepatic stellate cells (HSCs) are the primary effector cells in hepatic fibrosis, over depositing extracellular matrix (ECM) proteins. Our previous work found oridonin analog CYD0682 attenuates proliferation, Transforming Growth Factor β (TGFβ)-induced signaling, and ECM production in immortalized HSCs. The underlying mechanism behind these reductions is unclear.

View Article and Find Full Text PDF

Nucleic acid quantification, allowing us to accurately know the copy number of target nucleic acids, is significant for diagnosis, food safety, agricultural production, and environmental protection. However, current digital quantification methods require expensive instruments or complicated microfluidic chips, making it difficult to popularize in the point-of-care detection. Paper is an inexpensive and readily available material.

View Article and Find Full Text PDF

Both parasitoids and entomopathogenic fungi are becoming increasingly crucial for managing pest populations. Therefore, it is essential to carefully consider the potential impact of entomopathogenic fungi on parasitoids due to their widespread pathogenicity and the possible overlap between these biological control tools during field applications. However, despite their importance, little research has been conducted on the pathogenicity of entomopathogenic fungi on parasitoids.

View Article and Find Full Text PDF

Bt (Bacillus thuringiensis) maize is expected to be commercial cultivated widely in China. When Bt maize is planted near mulberry trees, it renders silkworms (Bombyx mori) vulnerable, as they belong to the same class as the Lepidoptera insects targeted by Bt maize. Cry1F has been found to be highly toxic to silkworms, particularly in their early larval stages.

View Article and Find Full Text PDF

Effective regulation of gene-edited products and resolution of public concerns are the prerequisites for the industrialization of gene-edited crops and their derived foods. CRISPR-associated protein, the core element of the CRISPR system, requires to be regulated. Thus, there is an urgent need to establish qualitative and quantitative detection methods for the gene.

View Article and Find Full Text PDF

Point-of-care nucleic acid detection is essential for diagnosis and food safety, especially in resource-limited areas. This study reports a gravity-driven and rotation-controlled (GR) chip-coupled lateral flow-based assay (LFA) for point-of-care nucleic acid detection. The sample solution is added to the inlet of the GR chip and flows into the loop-medicated isothermal amplification (LAMP) chamber by the action of gravity.

View Article and Find Full Text PDF

Insects employ multifaceted strategies to combat invading fungi, with immunity being a promising mechanism. Immune pathways function in signal transduction and amplification, ultimately leading to the activation of antimicrobial peptides (AMPs). Although several studies have shown that immune pathways are responsible for defending against fungi, the roles of parasitoid immune pathways involved in antifungal responses remain unknown.

View Article and Find Full Text PDF

Bacterial lipopolysaccharide (LPS) in the aquatic environment has been reported to cause diseases in red swamp crayfish (). In addition, deoxynivalenol (DON) is one of the primary mycotoxins found in aquaculture. However, the potential synergistic toxic effects of LPS and DON on crayfish are yet to be fully elucidated.

View Article and Find Full Text PDF

Biogenic amines (BAs) are produced by microbial decarboxylation in various foods. Histamine and tyramine are recognized as the most toxic of all BAs. Applying degrading amine enzymes such as multicopper oxidase (MCO) is considered an effective method to reduce BAs in food systems.

View Article and Find Full Text PDF

Microplastics (MPs) and the heavy metal cadmium (Cd) have attracted global attention for their toxicological interactions in aquatic organisms. The purpose of this investigation was evaluating the effect of MPs (1 mg L) and Cd (5 mg L) on the liver function, immune response of crucian carp (Carassius carassius) after 96 h exposure, and intestinal microbiota after 21 days, respectively. Co-exposure to MPs and Cd significantly enhanced MP accumulation in the liver of the crucian carp compared to the accumulation with exposure to MPs alone.

View Article and Find Full Text PDF

Transgenic soybean is one of the most planted crops for human food and animal feed. The channel catfish (Ictalurus punctatus) is an important aquatic organism cultured worldwide. In this study, the effect of six different soybean diets containing: two transgenic soybeans expressing different types of cp4-epsps, Vip3Aa and pat genes (DBN9004 and DBN8002), their non-transgenic parent JACK, and three conventional soybean varieties (Dongsheng3, Dongsheng7, and Dongsheng9) was investigated in juvenile channel catfish for eight weeks, and a safety assessment was performed.

View Article and Find Full Text PDF

Serine proteases (SPs) and their homologs (SPHs) are among the best-characterized gene families. They are involved in several physiological processes, including digestion, embryonic development and immunity. In the current study, a total of 177 SPs-related genes were characterized in the genome of Ostrinia furnacalis.

View Article and Find Full Text PDF

Detecting short genetically modified (GM) nucleic acid fragments in GM crops and associated products is critically important for the global agriculture industry. Although nucleic acid amplification-based technologies have been widely used for genetically modified organism (GMO) detection, they still struggle to amplify and detect these ultra-short nucleic acid fragments in highly processed products. Here, we used a multiple-CRISPR-derived RNA (crRNA) strategy to detect ultra-short nucleic acid fragments.

View Article and Find Full Text PDF

CRISPR/Cas12a technology is used for nucleic acid detection due to its specific recognition function and non-specific single-stranded DNA cleavage activity. Here, we developed a fluorescence visualisation detection method based on PCR and CRISPR/Cas12a approaches. The method was used to detect the nopaline synthase terminator (T-nos) of genetically modified (GM) crops, circumventing the need for expensive instruments and technicians.

View Article and Find Full Text PDF

Given the possibility that food contaminated with SARS-CoV-2 might become an infection source, there is an urgent need for us to develop a rapid and accurate nucleic acid detection method for SARS-CoV-2 in food to ensure food safety. Here, we propose a sensitive, specific, and reliable molecular detection method for SARS-CoV-2. It has a mechanism to control amplicon contamination.

View Article and Find Full Text PDF

The rapid on-site nucleic acid detection method is urgently required in many fields. In this study, we report a portable and highly integrated device for DNA detection that combines ultrafast DNA adsorption and rapid DNA amplification. The device, known as silicon film mediated recombinase polymerase amplification (RPA) for nucleic acid detection (SMART), can detect target DNA in less than 25 min from plants, animals, and microbes.

View Article and Find Full Text PDF

Currently, some on-site nucleic acid detection platforms have been developed. However, these platforms still need to be improved in device integration and multiple detection capability. In this work, an integrated dual nucleic acid analysis platform was developed by slip valve-assisted fluidic chip coupled with CRISPR/Cas12a system.

View Article and Find Full Text PDF