Publications by authors named "Xiaofeng Huo"

Microplastic-derived dissolved organic matter (MP-DOM) forms from the aging of microplastics (MPs), but the co-transport behavior of MP-DOM and aged MPs (AMPs) remains poorly understood. This study investigates the co-transport of AMPs and MP-DOM generated from original MPs (OMPs) over a wide range of environmentally relevant conditions. The transport of AMPs and MP-DOM changes as the degree of aging increases, specifically related to changes in their physicochemical characteristics.

View Article and Find Full Text PDF

Room-temperature tensile behavior and associated deformation mechanisms of multiple-axial forged (MAFed) pure Mg has been investigated. The as-MAFed Mg, with a coarsely recrystallized structure, exhibited a balanced strain-hardening behavior with strain, resulting in extraordinary mechanical properties with high ultimate stress (~200 MPa) and extensive true strain (~0.30).

View Article and Find Full Text PDF

Using Bi2O3 and MnC2 x 4H2O as raw materials, with HCl as solvent, photocatalysts of Mn-BiOCl with different molar ratio of Mn and Bi were prepared by a hydrolysis method. The obtained samples were characterized by XRD, HRTEM, TEM, UV-Vis DRS and SPS. The UV light photocatalytic activity of Mn-BiOCl was evaluated by using methyl orange as model compounds of photocatalytic reaction.

View Article and Find Full Text PDF

The ssh10b and ssh10b2 genes, a pair of distantly related paralogues in Sulfolobus shibatae, encode members of the Sac10b DNA binding protein family in thermophilic archaea. It has been shown previously that Ssh10b exists in abundance in S. shibatae and is capable of constraining negative DNA supercoils, properties that are consistent with a speculated architectural role for the protein in chromosomal organization.

View Article and Find Full Text PDF

Sulfolobus synthesizes a large quantity of highly conserved 7-kDa DNA-binding proteins suspected to be involved in chromosomal organization. The effect of the 7-kDa proteins on the polymerization and 3'-5' exonuclease activities of a family B DNA polymerase (polB1) from the hyperthermophilic archaeon Sulfolobus solfataricus was investigated. polB1 degraded both single-stranded DNA and double-stranded DNA at similar rates in vitro at temperatures of physiological relevance.

View Article and Find Full Text PDF