With the intensive research on the pathogenesis of Alzheimer's disease (AD), inhibition of HDAC6 appears to be a potential therapeutic approach for AD. In this paper, a series of tetrahydro-β-carboline derivatives with hydroxamic acid group were fast synthesized. Among all, the most potent 15 selectively inhibited HDAC6 with IC of 15.
View Article and Find Full Text PDFA series of tetrahydro-β-carboline (THβC)-based hydroxamic acids were rationally designed and synthesized as novel selective HDAC6 inhibitors (sHDAC6is) by the application of scaffold hopping strategy. Several THβC analogues were highly potent (IC < 5 nM) and selective against HDAC6 enzyme and exhibited good antiproliferative activity against human multiple myeloma (MM) cell. Molecular docking interpreted the structure activity relationship (SAR).
View Article and Find Full Text PDFNovel indole-piperazine derivatives with a hydroxamic acid moiety were designed and synthesized as selective histone deacetylase 6 (HDAC6) inhibitors. In enzymatic assays, all compounds exhibited nanomolar IC values. N-hydroxy-4-((4-(7-methyl-1H-indole-3-carbonyl)piperazin-1-yl)methyl)benzamide, 9c, was the most potent HDAC6 inhibitor (IC, 13.
View Article and Find Full Text PDF