Incomplete data presents significant challenges in drug sensitivity analysis, especially in critical areas like oncology, where precision is paramount. Our study introduces an innovative imputation method designed specifically for low-rank matrices, addressing the crucial challenge of data completion in anticancer drug sensitivity testing. Our method unfolds in two main stages: Initially, the singular value thresholding algorithm is employed for preliminary matrix completion, establishing a solid foundation for subsequent steps.
View Article and Find Full Text PDFLocalized energy exchange and mechanical coupling across a few nm gap at a corrugated graphene-substrate interface remain great challenges to study. In this work, an infrared laser is used to excite an unconstrained epitaxial graphene/SiC interface to induce a local thermal non-equilibrium. The interface behavior is uncovered using a second laser beam for Raman excitation.
View Article and Find Full Text PDFThis work reports on the first study of thermally induced effect on energy transport in single filaments of silkworm (Bombyx mori) fibroin degummed mild (type 1), moderate (type 2), to strong (type 3). After heat treatment from 140 to 220°C, the thermal diffusivity of silk fibroin type 1, 2, and 3 increases up to 37.9, 20.
View Article and Find Full Text PDFThe TET (transient electro-thermal) technique is an effective approach developed to measure the thermal diffusivity of solid materials, including conductive, semi-conductive or nonconductive one-dimensional structures. This technique broadens the measurement scope of materials (conductive and nonconductive) and improves the accuracy and stability. If the sample (especially biomaterials, such as human head hair, spider silk, and silkworm silk) is not conductive, it will be coated with a gold layer to make it electronically conductive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2014
A normal full-contact graphene/substrate interface has been reported to have a thermal conductance in the order of 10(8) Wm(-2)K(-1). The reported work used a sandwiched structure to probe the interface energy coupling, and the phonon behavior in graphene was significantly altered in an undesirable way. Here, we report an intriguing study of energy coupling across unconstrained graphene/substrate interfaces.
View Article and Find Full Text PDFMicroparticle and microfiber induced near-field laser heating has been widely used in surface nanostructuring. Information about the temperature and stress fields in the nanoscale near-field heating region is imperative for process control and optimization. Probing of this nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (~100 nm or less) and not immediately accessible for sensing.
View Article and Find Full Text PDFMicro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (~100 nm or less) and not immediately accessible for sensing.
View Article and Find Full Text PDFThis work reports on the first time experimental investigation of temperature field inside silicon substrates under particle-induced near-field focusing at a sub-wavelength resolution. The noncontact Raman thermometry technique employing both Raman shift and full width at half maximum (FWHM) methods is employed to investigate the temperature rise in silicon beneath silica particles. Silica particles of three diameters (400, 800 and 1210 nm), each under four laser energy fluxes of 2.
View Article and Find Full Text PDF