Cell Death Dis
November 2024
OMA1 is an ATP-independent zinc metalloprotease essential for maintaining mitochondrial homeostasis and plays a vital role in tumorigenesis. Depending on the type of cancer, a decrease in OMA1 expression has been linked to a varying prognosis for patients. The role of OMA1 in human osteosarcoma (OS), one of the most prevalent malignant bone tumors, remains elusive.
View Article and Find Full Text PDFMembrane-type I metalloproteinase (MT1-MMP/MMP14) plays a key role in various pathophysiological processes, indicating an unaddressed need for a targeted therapeutic approach. However, mice genetically deficient in Mmp14 show severe defects in development and growth. To investigate the possibility of MT1-MMP inhibition as a safe treatment in adults, we generated global Mmp14 tamoxifen-induced conditional knockout (Mmp14) mice and found that MT1-MMP deficiency in adult mice resulted in severe inflammatory arthritis.
View Article and Find Full Text PDFLow-density lipoprotein receptor (LDLR) mediates clearance of plasma LDL cholesterol, preventing the development of atherosclerosis. We previously demonstrated that membrane type 1-matrix metalloproteinase (MT1-MMP) cleaves LDLR and exacerbates the development of atherosclerosis. Here, we investigated determinants in LDLR and MT1-MMP that were critical for MT1-MMP-induced LDLR cleavage.
View Article and Find Full Text PDFFront Cardiovasc Med
October 2021
Lipids exert many essential physiological functions, such as serving as a structural component of biological membranes, storing energy, and regulating cell signal transduction. Dysregulation of lipid metabolism can lead to dyslipidemia related to various human diseases, such as obesity, diabetes, and cardiovascular disease. Therefore, lipid metabolism is strictly regulated through multiple mechanisms at different levels, including the extracellular matrix.
View Article and Find Full Text PDFPlasma LDL is produced from catabolism of VLDL and cleared from circulation mainly via the hepatic LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes LDLR degradation, increasing plasma LDL-C levels. Circulating PCSK9 is mainly secreted by the liver, whereas VLDL is exclusively secreted by hepatocytes.
View Article and Find Full Text PDFPlasma low-density lipoprotein (LDL) is primarily cleared by LDL receptor (LDLR). LDLR can be proteolytically cleaved to release its soluble ectodomain (sLDLR) into extracellular milieu. However, the proteinase responsible for LDLR cleavage is unknown.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
April 2021
Myocardin (MYOCD) plays an important role in cardiovascular disease. However, its underlying impact on atherosclerosis remains to be elucidated. ATP binding cassette transporter A1 (ABCA1), a key membrane-associated lipid transporter which maintains intracellular lipid homeostasis, has a protective function in atherosclerosis progress.
View Article and Find Full Text PDFPlasma levels of cholesterol, especially low-density lipoprotein cholesterol (LDL-C), are positively correlated with the risk of cardiovascular disease. Buildup of LDL in the intima promotes the formation of foam cells and consequently initiates atherosclerosis, one of the main underlying causes of cardiovascular disease. Hepatic LDL receptor (LDLR) is mainly responsible for the clearance of plasma LDL.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
February 2020
Background: Tanshinone IIA (Tan IIA) and Omentin-1 have a protective role in the cardiovascular system. However, if and how Tan IIA and Omentin-1 regulate cholesterol metabolism in macrophages has not been fully elucidated.
Objective: To investigate the possible mechanisms of Tan IIA and Omentin-1 on preventing macrophage cholesterol accumulation and atherosclerosis development.
Background: Lipoprotein lipase (LPL) plays an important role in triglyceride metabolism. It is translocated across endothelial cells to reach the luminal surface of capillaries by glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), where it hydrolyzes triglycerides in lipoproteins. MicroRNA 377 (miR-377) is highly associated with lipid levels.
View Article and Find Full Text PDFObjective: Previous studies suggest that IL-8 has an important role in the regulation of cholesterol efflux, but whether miRNAs are involved in this process is still unknown. The purpose of this study is to explore whether IL-8 promotes cholesterol accumulation by enhancing miR-183 expression in macrophages and its underlying mechanism.
Methods And Results: Treatment of THP-1 macrophage-derived foam cells with IL-8 decreased ABCA1 expression and cholesterol efflux.
Biochim Biophys Acta Mol Cell Biol Lipids
August 2018
Background And Aims: Recent studies have suggested that heat shock protein 70 (HSP70) may play critical roles in cardiovascular disease. However, the effects of HSP70 on the development of atherosclerosis in apoE mice remain largely unknown. This study was to investigate the role and potential mechanism of HSP70 in atherosclerosis.
View Article and Find Full Text PDFBackground: It has previously been demonstrated that apolipoprotein A-1 (apoA-1) binding protein (AIBP) promotes apoA-1 binding to ATP-binding cassette transporter A1 (ABCA1) and prevents ABCA1 protein degradation so as to inhibit foam cell formation. Because apoA-1 inhibits inflammatory signaling pathways, whether AIBP has an inhibitory effect on inflammatory signaling pathways in THP-1-derived macrophages is investigated.
Methods and results: Analysis of inflammation-related gene expression indicated that AIBP decreased lipopolysaccharide (LPS)-mediated macrophage inflammation.
Background And Aims: ApoA-1 binding protein (AIBP) is a secreted protein that interacts with apoA-I and accelerates cholesterol efflux from cells. We have recently reported that AIBP promotes apoA-1 binding to ABCA1 in the macrophage cell membrane, partially through 115-123 amino acids. However, the effects of AIBP on the development of atherosclerosis in vivo remain unknown.
View Article and Find Full Text PDFEndothelial-to-mesenchymal transition (EndMT) is a cellular reprogramming mechanism by which endothelial cells acquire a mesenchymal phenotype. EndMT is associated with fibroproliferative diseases, such as cancer progression and metastasis and cardiac and kidney fibrosis, and this condition has been extensively investigated over the past decade. Recently, studies showed that EndMT contributes to the initiation and progression of atherosclerotic lesion and plaque destabilization.
View Article and Find Full Text PDFAims: Atherosclerosis is the most common cause of cardiovascular disease, such as myocardial infarction and stroke. Previous study revealed that microRNA (miR)-134 promotes lipid accumulation and proinflammatory cytokine secretion through angiopoietin-like 4 (ANGPTL4)/lipid lipoprotein (LPL) signaling in THP-1 macrophages.
Methods: ApoE KO male mice on a C57BL/6 background were fed a high-fat/high-cholesterol Western diet, from 8 to 16 weeks of age.
Background: Lipoprotein lipase (LPL) expressed in macrophages plays an important role in promoting the development of atherosclerosis or atherogenesis. MicroRNA-182 (miR-182) is involved in the regulation of lipid metabolism and inflammation. However, it remains unclear how miR-182 regulates LPL and atherogenesis.
View Article and Find Full Text PDFIt was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
June 2017
Atherosclerotic lesions are characterized by the accumulation of abundant lipids and chronic inflammation. Previous researches have indicated that macrophage-derived lipoprotein lipase (LPL) promotes atherosclerosis progression by accelerating lipid accumulation and pro-inflammatory cytokine secretion. Although apelin-13 has been regarded as an atheroprotective factor, it remains unclear whether it can regulate the expression of LPL.
View Article and Find Full Text PDFMyocardin (MYOCD) the most important coactivator of serum response factor (SRF), plays a critical role specifically in the development of cardiac myocytes and vascular smooth muscle cells (VSMCs). Binding of Myocardin to the SRF on the CArG box-containing target genes can transcriptionally activate a variety of downstream muscle-specific genes, such as Sm22α, Acta2, Myh11, and several other signaling pathways. Myocardin expression represents a contractile and differentiated SMC phenotype.
View Article and Find Full Text PDF