CdS(x)Se(1-x) nanobelts are interesting nanostructured materials with a tunable band gap from 1.7 to 2.4 eV depending on the nanobelts' stoichiometry.
View Article and Find Full Text PDFIn this work, a simple technique to improve the field emission property of multi-walled carbon nanotubes is presented. Re-grown multi-walled carbon nanotubes are grown on the same substrates after the as-grown multi-walled carbon nanotubes are transferred to other substrates using polydimethylsiloxane as intermediation. For the duration of the synthesis of the re-grown multi-walled carbon nanotubes, similar synthesis parameters used in growing the as-grown multi-walled carbon nanotubes are utilized.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
May 2011
We report an effective process to create micropatterns on a thin film of porphyrin nanotubes PNTs on Si substrate using focused laser beam. The optical properties of the newly synthesized porphyrin nanotubes are investigated and micropatterning is demonstrated using laser fabrication, an increasingly important tool in various fields of research. We made use of this laser cutting method to create interesting and useful two-dimensional patterned structures.
View Article and Find Full Text PDFA technique utilizing the capillary assisted sieving capability of carbon nanotubes (CNTs) to achieve fractionation of nanoparticles of small size distribution is presented. By dipping aligned CNT arrays into a solution comprising different sized quantum dots (QDs), size-selective gradient decoration of QDs onto CNTs is achieved. The fractionating capability of CNTs is also demonstrated for poly-dispersed manganese doped zinc sulfide nanoparticles and QDs of varying sizes and chemical compositions, which we attribute to the size-selective sieving effect of CNTs.
View Article and Find Full Text PDFIn this work, detailed studies of three different capillary-assisted techniques for the formations of large-scale multiwalled carbon-nanotube (MWNT)-based microstructures were presented. Using laser induced artificial vacancies, new insights into the effect of laser power, densities of MWNTs, and oxidation process dependencies for the creations of MWNT polygons were presented. With organized initiations, MWNT pillars were crafted out of MWNT arrays and 0.
View Article and Find Full Text PDFThe hydrophobicity of vertically aligned multiwalled carbon nanotubes (MWCNTs) was improved through the creation of a parallel array of microwalls via a laser pruning technique. Changes to the hydrophobic nature of the patterned MWCNTs due to artificially induced roughness through variations in both the widths of the walls and the distance between adjacent walls, channel width, were investigated. The sample became more hydrophobic whenever water droplets landed on one microwall 7 or 13 microm in width.
View Article and Find Full Text PDFIn this work, techniques to create patterned array of multiwalled nanotube (MWNT) microstructures decorated with quantum dots (QDs) were presented. Using aligned array of intertwined MWNTs as the supporting template, a droplet of solution comprising QDs was deposited onto the MWNTs. When the solution evaporated away, QDs were left behind on the MWNT template.
View Article and Find Full Text PDFA simple technique to transfer aligned multi-walled carbon nanotubes (MWCNTs) is demonstrated in this work. With polydimethylsiloxane (PDMS) as the transfer medium, as-grown or patterned MWCNT arrays are directly transferred onto a wide variety of Pt-coated substrates such as glossy paper, cloth, polymers, glass slides, and metal foils at low temperatures. The surface of the transferred CNTs is cleaner with better alignment, compared with the as-grown one.
View Article and Find Full Text PDFThe effects of oxygen reactive ion etching (RIE) on the surface wettability of aligned carbon nanotube (CNT) films have been systematically investigated. It was found that 3 s of RIE treatment could change the surface of CNT films from hydrophobic to more hydrophilic. The degree of modification in the surface wettability of the film could be controlled by the flow rate of O2 gas during the RIE process.
View Article and Find Full Text PDF