While ultra-high-resolution mass spectrometry has enabled the identification of the molecular composition of dissolved organic matter (DOM), elucidating its molecular structure remains a challenging endeavor. Here, two fulvic acids (FAs), one from river and the other from forest soil, were subjected to reduction using an optimized n-butylsilane (n-BS) reduction method. The reduction products were purified through a combination of liquid-liquid extraction and silica gel column chromatography, resulting in the separation into saturates, aromatics, and polar products.
View Article and Find Full Text PDFSolid-phase extraction (SPE) coupled with negative-ion Electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been widely used for molecular characterization of dissolved organic matter (DOM). However, little attention has paid to test whether the salinity of the sample and the presence of chloride ions in water samples affect the molecular composition of DOM extracted by SPE (SPE-DOM). In this study, one natural organic matter standard and several natural waters were selected to investigate how salinity affects the molecular composition of SPE-DOM and the selectivity of chloride ion adducts formation with respect to the molecular structure of SPE-DOM in negative ion ESI FT-ICR MS analysis.
View Article and Find Full Text PDFSedimentary organic matter provides carbon substrates and energy sources for microorganisms, which drive benthic biogeochemical processes and in turn modify the quantity and quality of dissolved organic matter (DOM). However, the molecular composition and distribution of DOM and its interactions with microbes in deep-sea sediments remain poorly understood. Here, molecular composition of DOM and its relationship with microbes were analyzed in samples collected from two sediment cores (∼40 cm below the sea floor), at depths of 1157 and 2253 m from the South China Sea.
View Article and Find Full Text PDFCarboxyl-rich alicyclic molecules (CRAM) are highly unsaturated compounds extensively distributed throughout aquatic environments and sediments. This molecular group is widely referred to as a major proxy of recalcitrant organic materials, but its direct biosynthesis remains unclear. Steroids are a typical anthropogenic contaminant and have been previously suggested to be precursors of CRAM; however, experimental evidence to support this hypothesis is lacking.
View Article and Find Full Text PDFMore than 90% of marine dissolved organic matter (DOM) is biologically recalcitrant. This recalcitrance has been attributed to intrinsically refractory molecules or to low concentrations of molecules, but their relative contributions are a long-standing debate. Characterizing the molecular composition of marine DOM and its bioavailability is critical for understanding this uncertainty.
View Article and Find Full Text PDFThe complex natural organic matter of the Suwannee River fulvic acid (SRFA) standard was analyzed by online reversed-phase chromatography with Orbitrap MS/MS using collision-induced dissociation (CID). The number of isobars per nominal mass could be reduced to a single dominantly abundant species in a chromatographic run, sharing some ions with signals having the identical molecular formula in adjacent chromatographic segments and later serving as a precursor ion for fragmentation. A very large proportion of the same fragment ions existed in adjacent chromatographic fractions.
View Article and Find Full Text PDFOceanic dissolved organic matter (DOM) comprises a complex molecular mixture which is typically refractory and homogenous in the deep layers of the ocean. Though the refractory nature of deep-sea DOM is increasingly attributed to microbial metabolism, it remains unexplored whether ubiquitous microbial metabolism of distinct carbon substrates could lead to similar molecular composition of refractory DOM. Here, we conducted microbial incubation experiments using four typically bioavailable substrates (L-alanine, trehalose, sediment DOM extract, and diatom lysate) to investigate how exogenous substrates are transformed by a natural microbial assemblage.
View Article and Find Full Text PDFMacromolecular refractory organics in landfill leachate are extremely complex compounds. This study examined the molecular-level transformation characteristics of refractory organics in biologically-treated landfill leachate (i.e.
View Article and Find Full Text PDFElectrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been widely used for molecular characterization of dissolved organic matter (DOM). However, ESI FT-ICR MS generally has poor repeatability and reproducibility because of its inherent ionization mechanism and structural characteristics, which severely hindered its application in quantitative analysis of complex mixtures. In this article, we developed an in-house standard method for molecular characterization of DOM by ESI FT-ICR MS.
View Article and Find Full Text PDFThis study investigated the effectiveness of a combined membrane bioreactor (MBR) and reverse osmosis (RO) process for treating leachate produced by a large-scale anaerobic landfill. The MBR process had limited treatment efficiency for removing organic pollutants, but when combined with RO, the integrated system completely removed macromolecular compounds (i.e.
View Article and Find Full Text PDFMolecular composition of dissolved organic matter (DOM) is a hot topic in subjects such as environmental science and geochemistry. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been applied to molecular composition characterization of DOM successfully. However, high instrument and maintenance costs have constrained its wider application.
View Article and Find Full Text PDF