Asthma, the most prevalent respiratory disease, affects more than 300 million people and causes more than 250,000 deaths annually. Type 2-high asthma is characterized by interleukin (IL)-5-driven eosinophilia, along with airway inflammation and remodeling caused by IL-4 and IL-13. Here we utilize IL-5 as the targeting domain and deplete BCOR and ZC3H12A to engineer long-lived chimeric antigen receptor (CAR) T cells that can eradicate eosinophils.
View Article and Find Full Text PDFLong-term antitumor efficacy of chimeric antigen receptor (CAR) T cells depends on their functional persistence in vivo. T cells with stem-like properties show better persistence, but factors conferring bona fide stemness to T cells remain to be determined. Here, we demonstrate the induction of CAR T cells into an immortal-like and functional state, termed TIF.
View Article and Find Full Text PDFCa2+ in endoplasmic reticulum (ER) dictates T cell activation, proliferation, and function via store-operated Ca2+ entry. How naive T cells maintain an appropriate level of Ca2+ in ER remains poorly understood. Here, we show that the ER transmembrane protein VMP1 is essential for maintaining ER Ca2+ homeostasis in naive T cells.
View Article and Find Full Text PDFWe report quantitative determination of extracellular HO released from single COS-7 cells with high spatial resolution, using scanning electrochemical microscopy (SECM). Our strategy of depth scan imaging in vertical x-z plane was conveniently utilized to a single cell for obtaining probe approach curves (PACs) to any positions on the membrane of a live cell by simply drawing a vertical line on one depth SECM image. This SECM mode provides an efficient way to record a batch of PACs, and visualize cell topography simultaneously.
View Article and Find Full Text PDFBackground: Minimally invasive surgery for carpal tunnel syndrome has been consistently the mainstay of treatment. In this study, we developed a novel bush hook via a mini-transverse incision at proximal wrist crease to surgically treat carpal tunnel syndrome and our aim was to compare the results with those of mid-palmar small longitudinal incision in carpal tunnel release.
Methods: This is a retrospective study on patients who received a mini-transverse incision and a novel bush hook or a mid-palmar small longitudinal incision for treatment of carpal tunnel syndrome.
Robust expansion of adoptively transferred T cells is a prerequisite for effective cancer immunotherapy, but how many genes in the genome modulate T cell expansion remains unknown. Here, we perform in vivo and in vitro CRISPR screens to systematically identify genes influencing CD8 T cell expansion. In the mouse genome, ∼2,600 and ∼1,500 genes are required for optimal CD8 T cell expansion in vivo and in vitro, respectively.
View Article and Find Full Text PDFPurpose: This study aimed to investigate the outcomes of a mini-transverse incision with a bush-hook versus a conventional open incision for carpal tunnel release (CTR).
Methods: This was a prospective study. The decision to receive either technique (mini-transverse incision with a bush-hook or conventional open incision) was primarily based on patients' choice.
Natural killer (NK) cells are potent cytotoxic effector cells of the innate immune system and play an important role in tumor immunosurveillance and control. NKG2D is an activating receptor of NK cells. The NKG2D receptor-ligand system has contributed to immune cells recognizing tumor cells and the tumor microenvironment.
View Article and Find Full Text PDFPyrroline-5-carboxylate synthase (P5CS) catalyzes the synthesis of pyrroline-5-carboxylate (P5C), a key precursor for the synthesis of proline and ornithine. P5CS malfunction leads to multiple human diseases; however, the molecular mechanism underlying these diseases is unknown. We found that P5CS localizes in mitochondria in rod- and ring-like patterns but diffuses inside the mitochondria upon cellular starvation or exposure to oxidizing agents.
View Article and Find Full Text PDFMitochondria are highly dynamic organelles. Through a large-scale in vivo RNA interference (RNAi) screen that covered around a quarter of the genes (4000 genes), we identified 578 genes whose knockdown led to aberrant shapes or distributions of mitochondria. The complex analysis revealed that knockdown of the subunits of proteasomes, spliceosomes, and the electron transport chain complexes could severely affect mitochondrial morphology.
View Article and Find Full Text PDFMitochondria-ER contact sites (MERCs) enable communication between the ER and mitochondria and serve as platforms for many cellular events, including autophagy. Nonetheless, the molecular organization of MERCs is not known, and there is no bona fide marker of these contact sites in mammalian cells. In this study, we designed a genetically encoded reporter using split GFP protein for labeling MERCs.
View Article and Find Full Text PDFMitochondria undergo frequent morphological changes through fission and fusion. Mutations in core members of the mitochondrial fission/fusion machinery are responsible for severe neurodegenerative diseases. However, the mitochondrial fission/fusion mechanisms are poorly understood.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a highly dynamic organelle that plays a critical role in many cellular processes. Abnormal ER morphology is associated with some human diseases, although little is known regarding how ER morphology is regulated. Using a forward genetic screen to identify genes that regulated ER morphology in Drosophila, we identified a mutant of Sec22, the orthologs of which in yeast, plants, and humans are required for ER to Golgi trafficking.
View Article and Find Full Text PDFPatterned copper sulfide (Cu(x)S) microstructures on Si (1 1 1) wafers were successfully fabricated by a relatively simple solution growth method using copper sulfate, ethylenediaminetetraacetate and sodium thiosulfate aqueous solutions as precursors. The Cu(x)S particles were selectively deposited on a patterned self-assembled monolayer of 3-aminopropyltriethoxysilane regions created by photolithography. To obtain high quality Cu(x)S films, preparative conditions such as concentration, proportion, pH and temperature of the precursor solutions were optimized.
View Article and Find Full Text PDFDetection of reactive oxygen species (ROS) released from live macrophage cells (RAW264.7) without any addition of external redox mediators using constant-height and constant-distance mode scanning electrochemical microscopy (SECM) was presented in this Letter. The successful separation of the ROS profile from the topography of cells in the physiological condition was demonstrated by recording the amperometric current and probing position in the z-direction along with lateral coordinates at each pixel where an alternating current (AC) was kept constant.
View Article and Find Full Text PDFA simultaneous electrochemical (EC) and electrochemiluminescence (ECL) detection scheme was introduced to both microchip and conventional capillary electrophoresis (CE). In this dual detection scheme, tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) was used as an ECL reagent as well as a catalyst (in the formation of Ru(bpy)3(3+)) for the EC detection. In the Ru(bpy)3(2+)-ECL process, Ru(bpy)3(3+) was generated and then reacted with analytes resulting in an ECL emission and a great current enhancement in EC detection due to the catalysis of Ru(bpy)3(3+).
View Article and Find Full Text PDFA new technique for investigating drug-protein binding was developed employing capillary electrophoresis (CE) coupled with tris(2,2'-bipyridyl) ruthenium(II) [Ru(bpy)(3) (2+)] electrochemiluminescence (ECL) (CE-ECL) detection after equilibrium dialysis. Three basic drugs, namely pridinol, procyclidine and its analogue trihexyphenidyl, were successfully separated by capillary zone electrophoresis with end-column Ru(bpy)(3) (2+) ECL detection. The relative drug binding to human serum albumin (HSA) for each single drug as well as for the three drugs binding simultaneously was calculated.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2004
In this article, an antibiotic, lincomycin was determined in the urine sample by microchip capillary electrophoresis (CE) with integrated indium tin oxide (ITO) working electrode based on electrochemiluminescence (ECL) detection. This microchip CE-ECL system can be used for the rapid analysis of lincomycin within 40s. Under the optimized conditions, the linear range was obtained from 5 to 100 microM with correlation coefficient of 0.
View Article and Find Full Text PDF