Age-related functional deterioration in skeletal muscle raises the risk for falls, disability, and mortality in the elderly, particularly in obese people or those with type 2 diabetes mellitus (T2D). However, the response of the skeletal muscle to transitioning from obesity to diabetes remains poorly defined, despite that obesity is classified as a stage of pre-diabetes. We screened and selected spontaneously obese and diabetic rhesus monkeys and examined altered protein expression in skeletal muscle of healthy aging (CON), obesity aging (OB), and type 2 diabetes mellitus aging (T2D) rhesus monkeys using Tandem Mass Tags (TMT)-based quantitative proteomic analysis.
View Article and Find Full Text PDFAdenomyosis is a poorly understood gynecological disorder lacking effective treatments. Controversy persists regarding "invagination" and "metaplasia" theories. The endometrial-myometrial junction (EMJ) connects the endometrium and myometrium and is important for diagnosing and classifying adenomyosis, but its in-depth study is just beginning.
View Article and Find Full Text PDFBackground: Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application.
View Article and Find Full Text PDFThe fused deposition modeling (FDM) technique has enormous potential for developing customized medical products with complicated structures. In this study, the application of the FDM technique to three medical products was investigated, and the risk factors affecting product quality were evaluated. For FDM-printed matrix and reservoir preparations, special attention should be paid to spacing width reduction and layered coating thickness.
View Article and Find Full Text PDFSelf-organized blastoids from extended pluripotent stem (EPS) cells possess enormous potential for investigating postimplantation embryo development and related diseases. However, the limited ability of postimplantation development of EPS-blastoids hinders its further application. In this study, single-cell transcriptomic analysis indicated that the "trophectoderm (TE)-like structure" of EPS-blastoids was primarily composed of primitive endoderm (PrE)-related cells instead of TE-related cells.
View Article and Find Full Text PDFHematopoietic stem cell (HSC) self-renewal and aging are tightly regulated by paracrine factors from the bone marrow niche. However, whether HSC rejuvenation could be achieved by engineering a bone marrow niche ex vivo remains unknown. Here, we show that matrix stiffness fine-tunes HSC niche factor expression by bone marrow stromal cells (BMSCs).
View Article and Find Full Text PDFJ Cardiovasc Transl Res
April 2023
To clarify the mechanisms underlying TRPV4 regulating angiogenesis by enhancing the activity of CACs, we detected the angiogenesis ability of HUVEC co-cultured with CACs, the effects of ILK on TRPV4 expression and CACs activity, and the impacts of TRPV4 agonist or inhibitor on cardio-protection of AMI rats with or without CAC transplantation. ILK overexpression or TRPV4 agonist promoted the angiogenesis in HUVEC co-cultured with CACs. ILK overexpression or activation upregulated TRPV4 expression in CACs, while TRPV4 agonist stimulation also regulated ILK expression.
View Article and Find Full Text PDFThe METTL3-METTL14 complex, the "writer" of N-methyladenosine (mA), plays an important role in many biological processes. Previous studies have shown that Mettl3 overexpression can increase the level of mA and promote somatic cell reprogramming. Here, we demonstrate that Mettl14, another component of the methyltransferase complex, can significantly enhance the generation of induced pluripotent stem cells (iPSCs) in an mA-independent manner.
View Article and Find Full Text PDFSomatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT embryos using ultra-low-input MNase-seq (ULI-MNase-seq).
View Article and Find Full Text PDFGiven the benefits of high printing precision and capability, the selective laser sintering technique has been used to manufacture medicines and implants with unique engineering and functional properties. Using homogenized beams with a reduced thermal gradient and a larger diameter as an alternative energy source, the thermal stability and production efficiency of powder bed fusion would be improved. Herein, a novel homogenized spot melting (HSM) technology for pharmaceutical preparation was developed in this study.
View Article and Find Full Text PDFN-methyladenosine (mA) and its regulatory components play critical roles in various developmental processes in mammals. However, the landscape and function of mA in early embryos remain unclear owing to limited materials. Here we developed a method of ultralow-input mA RNA immunoprecipitation followed by sequencing to reveal the transcriptome-wide mA landscape in mouse oocytes and early embryos and found unique enrichment and dynamics of mA RNA modifications on maternal and zygotic RNAs, including the transcripts of transposable elements MTA and MERVL.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2022
Morphology-control, as a promising and effective strategy, is widely implemented to change surface atomic active sites and thus enhance the intrinsic electrocatalytic activity and selectivity. As a typical n-type semiconductor, a series of bismuth vanadate samples with tunable morphologies of clavate, fusiform, flowered, bulky, and nanoparticles were prepared to investigate the morphology effect. Among all the synthesized samples, the clavate shaped BiVO with high index facets of (112), (301), and (200) exhibited reduced extrinsic pseudocapacitance and enhanced redox response, which is beneficial for tackling the sluggish voltammetric response of the traditional nanoparticle on the electrode surface.
View Article and Find Full Text PDFObjectives: Although inter-arm blood pressure difference (IAD) and inter-ankle blood pressure difference (IAND) have been shown to be associated with cardiovascular disease, controversy remains. In this study, we investigated the prevalence of IAD and IAND as well as the correlation with arterial stiffness and systolic blood pressure in a large number of the Chinese population.
Methods: The four-limb blood pressure, IAD, IAND, brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) of 12,176 participants have been measured.
The poor printability of most pharmaceutical polymers greatly restricts the application of the fused deposition modeling (FDM) technique in the field of personalized pharmaceutical preparations. General strategies to improve printability and provide practical guidelines for the optimization of formulations are lacking. Moreover, the mechanism associated with the smooth printing process of modified printing materials needs to be investigated.
View Article and Find Full Text PDFMajor evolutionary transitions are enigmas, and the most notable enigma is between invertebrates and vertebrates, with numerous spectacular innovations. To search for the molecular connections involved, we asked whether global epigenetic changes may offer a clue by surveying the inheritance and reprogramming of parental DNA methylation across metazoans. We focused on gametes and early embryos, where the methylomes are known to evolve divergently between fish and mammals.
View Article and Find Full Text PDFBackground: Multicellular organisms require precise gene regulation during ontogeny, and epigenetic modifications, such as DNA methylation and histone modification, facilitate this precise regulation. The conservative reprogramming patterns of DNA methylation in vertebrates have been well described. However, knowledge of how histone modifications are passed on from gametes to early embryos is limited, and whether histone modification reprogramming is conserved is not clear.
View Article and Find Full Text PDFProper reprogramming of parental DNA methylomes is essential for mammalian embryonic development. However, it is unknown whether abnormal methylome reprogramming occurs and is associated with the failure of embryonic development. Here we analyzed the DNA methylomes of 57 blastocysts and 29 trophectoderm samples with different morphological grades during assisted reproductive technology (ART) practices.
View Article and Find Full Text PDFHigh-order chromatin structure plays important roles in gene expression regulation. Knowledge of the dynamics of 3D chromatin structures during mammalian embryo development remains limited. We report the 3D chromatin architecture of mouse gametes and early embryos using an optimized Hi-C method with low-cell samples.
View Article and Find Full Text PDF