Arhopalus unicolor is a carrier of the pine wood nematode (PWN), which causes pine wilt disease, killing pine trees and causing considerable economic and environmental losses. While the A. unicolor mitochondrial genome has been published, a high-quality genome assembly and annotation of A.
View Article and Find Full Text PDFCell senescence and metabolic reprogramming are significant features of diabetic kidney disease (DKD). However, the underlying mechanisms between cell senescence and metabolic reprogramming are poorly defined. Here, we report that retinoid X receptor α (RXRα), a key nuclear receptor transcription factor, regulates cell senescence and metabolic reprogramming in DKD.
View Article and Find Full Text PDFDeveloping efficient, low-cost, MOF catalysts for CO conversion at low CO concentrations under mild conditions is particularly interesting but remains highly challenging. Herein, we prepared an isostructural series of two-dimensional (2D) multivariate metal-organic frameworks (MTV-MOFs) containing copper- and/or silver-based cyclic trinuclear complexes (Cu-CTC and Ag-CTC). These MTV-MOFs can be used as efficient and reusable heterogeneous catalysts for the cyclization of propargylamine with CO.
View Article and Find Full Text PDFGenomic instability (GI) was associated with tumorigenesis. However, GI-related lncRNA signature (GILncSig) in lung adenocarcinoma (LUAD) is still unknown. In this study, the lncRNA expression data, somatic mutation information and clinical survival information of LUAD were downloaded from The Cancer Genome Atlas (TCGA) and performed differential analysis.
View Article and Find Full Text PDFMetabolic-associated fatty liver disease (MAFLD) is witnessing a global surge; however, it still lacks effective pharmacological interventions. Fucoxanthin, a natural bioactive metabolite derived from marine brown algae, exhibits promising pharmacological functions, particularly in ameliorating metabolic disorders. However, the mechanisms underlying its therapeutic efficacy in addressing MAFLD remain elusive.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) are constructed from small organic molecules through reversible covalent bonds, and are therefore considered a special type of polymer. Small organic molecules are divided into nodes and connectors based on their roles in the COF's structure. The connector generally forms reversible covalent bonds with the node through two reactive end groups.
View Article and Find Full Text PDFThe imbalance between T helper 17 (Th17) and regulatory T (Treg) cells is an important mechanism in the pathogenesis of diabetic nephropathy (DN). Serum/glucocorticoid regulated kinase 1 (SGK1) is a serine-threonine kinase critical for stabilizing the Th17 cell phenotype. Sodium-glucose cotransporter 2 (SGLT2) is a glucose transporter that serves as a treatment target for diabetes.
View Article and Find Full Text PDFThe properties of two-dimensional covalent organic frameworks (2D COFs), including porosity, catalytic activity as well as electronic and optical properties, are greatly affected by their interlayer stacking structures. However, the precise control of their interlayer stacking mode, especially in a reversible fashion, is a long-standing and challenging pursuit. Herein, we prepare three 2D copper-organic frameworks, namely JNM-n (n = 7, 8, and 9).
View Article and Find Full Text PDFIntroduction: Diabetic kidney disease (DKD) has become the leading cause of end-stage kidney disease (ESKD) in most countries. Recently, long noncoding RNA XIST has been found involved in the development of DKD.
Methods: A total of 1184 hospitalized patients with diabetes were included and divided into four groups based on their estimated glomerular filtration rate (eGFR) and urinary albumin to creatinine ratio (UACR): normal control group (nDKD), DKD with normoalbuminuric and reduced eGFR (NA-DKD), DKD with albuminuria but without reduced eGFR (A-DKD), and DKD with albuminuria and reduced eGFR (Mixed), and then their clinical characteristics were analyzed.
Owing to the wide and growing demand for primary alcohols, the development of efficient catalysts with high regioselectivity remains a worthwhile pursuit. However, according to Markovnikov's rule, it is a challenge to obtain primary alcohols with high yields and regioselectivity from terminal alkenes or alkynes. Herein, we report the synthesis of a photosensitizing two-dimensional (2D) metal-organic framework (MOF) from cyclic trinuclear copper(I) units (Cu-CTUs) and a boron dipyrro-methene (Bodipy) ligand.
View Article and Find Full Text PDFThe synthesis of atomically precise copper nanoclusters (Cu-NCs) with high chemical stability is a prerequisite for practical applications, yet still remains a long-standing challenge. Herein, we have prepared a pyrazolate-protected Cu-NC (Cu8), which exhibited exceptional chemical stability either in solid-state or in solution. The crystals of Cu8 are still suitable for single crystal X-ray diffraction analysis even after being treated with boiling water, 8 wt % H O , high concentrated acid (1 M HCl) or saturated base (≈20 M KOH), respectively.
View Article and Find Full Text PDFFeP has emerged as an appealing anode material for lithium-ion batteries (LIBs) thanks to its high theoretical capacity, safe voltage platform and rich resources. Nevertheless, sluggish charge transfer kinetics, inevitable volume expansion and easy agglomeration of active materials limit its practical applications. Here, novel Cu-doped FeP@C was synthesized by a synergistic strategy of metal doping and in situ carbon encapsulation.
View Article and Find Full Text PDFObesity-induced metabolic syndrome is a rapidly growing conundrum, reaching epidemic proportions globally. Chronic inflammation in obese adipose tissue plays a key role in metabolic syndrome with a series of local and systemic effects such as inflammatory cell infiltration and inflammatory cytokine secretion. Adipose tissue macrophages (ATM), as one of the main regulators in this process, are particularly crucial for pharmacological studies on obesity-related metabolic syndrome.
View Article and Find Full Text PDFDNA methylation is closely related to the occurrence and development of many diseases, but its role in obesity is still unclear. This study aimed to find the potential differentially methylated genes associated with obesity occurrence and development. By combining methylation and transcriptome analysis, we identified the key genes in adipose tissue affecting the occurrence and development of obesity and revealed the possible molecular mechanisms involved in obesity pathogenesis.
View Article and Find Full Text PDFAt present, several studies have assessed the association between ERCC6 rs2228526 polymorphism and the risk of cancer. However, the association remained controversial. To provide a more accurate estimate on the association, we performed a meta-analysis search of case-control studies on the associations of ERCC6 rs2228526 with susceptibility to cancer.
View Article and Find Full Text PDFBackground: Activation of brown adipose tissue (BAT) increases energy expenditure, which makes it an attractive therapeutic strategy for obesity. LncRNAs play an important role in adipocyte differentiation and regulation. Here we assessed the effect of lncRNA XIST on brown preadipocytes differentiation and metabolic regulation.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2021
Background: In the past few decades, many lines of evidence implicate the importance of liver kinase B1 (LKB1) as a tumor suppressor gene in the development and progression of solid tumours. However, the prognostic and clinicopathological value of LKB1 in patients with lung cancer are controversial. This article aimed to investigate the latest evidence on this question.
View Article and Find Full Text PDFObjective: Adipose tissue is a major source of circulating microRNAs (miRNAs) that can regulate target genes in distant organs. However, the role of brown adipose tissue (BAT) in diabetic kidney disease (DKD) is still unknown. We studied the original BAT miR-30b targeting two key fibrotic regulators, Runt-related transcription factor 1 (Runx1) and snail family zinc finger 1 (Snail1), to combat DKD.
View Article and Find Full Text PDFAims: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis.
View Article and Find Full Text PDFInt Immunopharmacol
February 2021
Objective: The prognostic role of programmed death ligand-2 (PD-L2) expression in lung cancer has been widely studied, however, the results are controversial. Accordingly, we investigated the prognostic and clinicopathological value of PD-L2 in patients with lung cancer in this meta-analysis.
Methods: Relevant studies were systematically searched in the PubMed, Web of Science, EMBASE, ClinicalTrials.
Objective: Programmed death ligand-2 (PD-L2)has been detected in various cancers. However, its prognostic value in digestive system cancers (DSCs) remains unclear. Accordingly, this meta-analysis investigated the prognostic and clinicopathological utility of PD-L2 in patients with DSCs.
View Article and Find Full Text PDFChloride (Cl) homeostasis is of great significance in cardiovascular system. Serum Cl level is inversely associated with the mortality of patients with heart failure. Considering the importance of angiogenesis in the progress of heart failure, this study aims to investigate whether and how reduced intracellular Cl concentration ([Cl]) affects angiogenesis.
View Article and Find Full Text PDF