Publications by authors named "Xiaochuan Huang"

Article Synopsis
  • Using alternating currents (AC) can effectively prevent the formation of mineral crystals on surfaces in contact with super-saturated fluids, such as heat exchangers and pipes.
  • The study demonstrates that periodic charging and discharging of the electrical double layer (EDL) on titanium sheets in super-saturated CaCO solutions inhibits both crystal nucleation and growth due to enhanced ion migration.
  • Operating at 4 V and frequencies between 0.1-10 Hz results in over 96% reduction in turbidity and over 92% reduction in calcium carbonate coverage, showcasing a promising method for controlling mineral scaling in various industrial applications.
View Article and Find Full Text PDF

This study investigated the effects of molecular weight regulation on mannoproteins (MPs) in encapsulating both monomeric and oligomeric proanthocyanidins (MOPC). To achieve this, two different conformations of MPs were fractionated by ultrafiltration into two main molecular weight components. The results indicated that regulating molecular weight through ultrafiltration altered the conformation of MPs chains, which in turn affected the intermolecular forces with MOPC.

View Article and Find Full Text PDF

Halide perovskite nanocrystals (HPNCs) have emerged as promising materials for various light harvesting applications due to their exceptional optical and electronic properties. However, their inherent instability in water and biological fluids has limited their use as photocatalysts in the aqueous phase. In this study, we present highly water-stable SiO-coated HPNCs as efficient photocatalysts for antimicrobial applications.

View Article and Find Full Text PDF

To rich the research for mannoproteins (MPs) suppressive effect on the bitterness of wine, this study distinguished bitterness into initial bitterness and bitter aftertaste. By utilizing the thermal alkali extraction method, MPs were extracted from three different yeast species: Saccharomyces cerevisiae (CECA), Lachancea thermotolerans (A38), and Torulaspora delbrueckii (2082). Their basic structures, addition concentrations, and correlation with bitter suppression ability were characterized.

View Article and Find Full Text PDF

Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis. The tumour necrosis factor receptor superfamily member 6 (TNFRSF6) gene encodes the Fas protein, and it participates in apoptosis induced in different cell types. This study aimed to explore TNFRSF6 function in SAE.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are emerging nanomaterials with widespread applications for their superior properties. However, the potential health and environmental risks of MOFs still need further understanding. In this work, we investigated the toxicity of a typical cobalt-based MOF (ZIF-67) with varied primary particle sizes (100, 200, 400, 700 and 1200 nm) to Photobacterium Phosphoreum T3 strain, a kind of luminescent bacteria.

View Article and Find Full Text PDF

Formation of mineral scale on a material surface has profound impact on a wide range of natural processes as well as industrial applications. However, how specific material surface characteristics affect the mineral-surface interactions and subsequent mineral scale formation is not well understood. Here we report the superior resistance of hexagonal boron nitride (hBN) to mineral scale formation compared to not only common metal and polymer surfaces but also the highly scaling-resistant graphene, making hBN possibly the most scaling resistant material reported to date.

View Article and Find Full Text PDF

Inorganic scaling caused by precipitation of sparingly soluble salts at supersaturation is a common but critical issue, limiting the efficiency of membrane-based desalination and brine management technologies as well as other engineered systems. A wide range of minerals including calcium carbonate, calcium sulfate, and silica precipitate during membrane-based desalination, limiting water recovery and reducing process efficiency. The economic impact of scaling on desalination processes requires understanding of its sources, causes, effects, and control methods.

View Article and Find Full Text PDF

Nitrate (NO) is a ubiquitous contaminant in water and wastewater. Conventional treatment processes such as adsorption and membrane separation suffer from low selectivity for NO removal, causing high energy consumption and adsorbents usage. In this study, we demonstrate selective removal of NO in an electrosorption process by a thin, porous carbonized eggshell membrane (CESM) derived from eggshell bio-waste.

View Article and Find Full Text PDF

Background: Pubic symphysis diastasis (PSD) hinders the connection between bilateral ischia and pubic bones, resulting in instability of the anterior pelvic ring. PSD exceeding 25 mm is considered disruptions of the symphyseal and unilateral/bilateral anterior sacroiliac ligaments and require surgical intervention. The correct choice of fixation devices is of great significance to treat PSD.

View Article and Find Full Text PDF

Scale formation is an important challenge in water and wastewater treatment systems. However, due to the complex nature of membrane surfaces, the effects of specific membrane surface characteristics on scale formation are poorly understood. In this study, the independent effect of surface hydrophobicity on gypsum (CaSO·2HO) scale formation via surface-induced nucleation and bulk homogeneous nucleation was investigated using quartz crystal microbalance with dissipation (QCM-D) on self-assembled monolayers (SAMs) terminated with -OH, -CH, and -CF functional groups.

View Article and Find Full Text PDF
Article Synopsis
  • Hexavalent chromium (Cr(VI)) is a dangerous groundwater contaminant, and this study presents an innovative electrochemical method for its removal using a hybrid MOF@rGO nanomaterial.
  • The nanomaterial consists of a cobalt-based metal-organic framework (Co-MOF) on reduced graphene oxide (rGO), which allows for efficient and selective adsorption of CrO, outperforming other common anions like Cl and As(III).
  • This process not only achieves over 100% charge efficiency through strong physisorption but also enables the regeneration of the Co-MOF by reversing the applied voltage, transforming toxic Cr(VI) into less harmful forms without needing additional chemicals.
View Article and Find Full Text PDF