Molecular dynamics simulations of smooth and striated muscle myosin regulatory light chain (RLC) N-terminal extension (NTE) showed that diphosphorylation induces a disorder-to-order transition. Our goal here was to further explore the effects of mono- and diphosphorylation on the straightening and rigidification of the tarantula myosin RLC NTE. For that we used MD simulations followed by persistence length analysis to explore the consequences of secondary and tertiary structure changes occurring on RLC NTE following phosphorylation.
View Article and Find Full Text PDFThe ends of coiled-coil tropomyosin molecules are joined together by nine to ten residue-long head-to-tail "overlapping domains". These short four-chained interconnections ensure formation of continuous tropomyosin cables that wrap around actin filaments. Molecular Dynamics simulations indicate that the curvature and bending flexibility at the overlap is 10-20% greater than over the rest of the molecule, which might affect head-to-tail filament assembly on F-actin.
View Article and Find Full Text PDFTropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin's coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2014
To be effective as a gatekeeper regulating the access of binding proteins to the actin filament, adjacent tropomyosin molecules associate head-to-tail to form a continuous super-helical cable running along the filament surface. Chimeric head-to-tail structures have been solved by NMR and X-ray crystallography for N- and C-terminal segments of smooth and striated muscle tropomyosin spliced onto non-native coiled-coil forming peptides. The resulting 4-helix complexes have a tight coiled-coil N-terminus inserted into a separated pair of C-terminal helices, with some helical unfolding of the terminal chains in the striated muscle peptides.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
August 2013
Our thesis is that thin filament function can only be fully understood and muscle regulation then elucidated if atomic structures of the thin filament are available to reveal the positions of tropomyosin on actin in all physiological states. After all, it is tropomyosin influenced by troponin that regulates myosin-crossbridge cycling on actin and therefore controls contraction in all muscles. In addition, we maintain that a complete appreciation of thin filament activation also requires that the mechanical properties of tropomyosin itself are recognized and then related to the effect of myosin-association on actin.
View Article and Find Full Text PDFPoint mutations targeting muscle thin filament proteins are the cause of a number of cardiomyopathies. In many cases, biological effects of the mutations are well-documented, whereas their structural and mechanical impact on filament assembly and regulatory function is lacking. In order to elucidate molecular defects leading to cardiac dysfunction, we have examined the structural mechanics of two tropomyosin mutants, E180G and D175N, which are associated with hypertrophic cardiomyopathy (HCM).
View Article and Find Full Text PDFA large number of tropomyosin (Tm) isoforms function as gatekeepers of the actin filament, controlling the spatiotemporal access of actin-binding proteins to specialized actin networks. Residues ∼40-80 vary significantly among Tm isoforms, but the impact of sequence variation on Tm structure and interactions with actin is poorly understood, because structural studies have focused on skeletal muscle Tmα. We describe structures of N-terminal fragments of smooth muscle Tmα and Tmβ (sm-Tmα and sm-Tmβ).
View Article and Find Full Text PDFWhile mutations in the myosin subfragment 1 motor domain can directly disrupt the generation and transmission of force along myofibrils and lead to myopathy, the mechanism whereby mutations in the myosin rod influences mechanical function is less clear. Here, we used a combination of various imaging techniques and molecular dynamics simulations to test the hypothesis that perturbations in the myosin rod can disturb normal sarcomeric uniformity and, like motor domain lesions, would influence force production and propagation. We show that disrupting the rod can alter its nanomechanical properties and, in vivo, can drive asymmetric myofilament and sarcomere formation.
View Article and Find Full Text PDFElectron microscopy and fiber diffraction studies of reconstituted F-actin-tropomyosin filaments reveal the azimuthal position of end-to-end linked tropomyosin molecules on the surface of actin. However, the longitudinal z-position of tropomyosin along F-actin is still uncertain. Without this information, atomic models of F-actin-tropomyosin filaments, free of constraints imposed by troponin or other actin-binding proteins, cannot be formulated, and thus optimal interfacial contacts between actin and tropomyosin remain unknown.
View Article and Find Full Text PDFThe structural mechanics of tropomyosin are essential determinants of its affinity and positioning on F-actin. Thus, tissue-specific differences among tropomyosin isoforms may influence both access of actin-binding proteins along the actin filaments and the cooperativity of actin-myosin interactions. Here, 40 nm long smooth and striated muscle tropomyosin molecules were rotary-shadowed and compared by means of electron microscopy.
View Article and Find Full Text PDFThe inherent flexibility of rod-like tropomyosin coiled-coils is a significant factor that constrains tropomyosin's complex positional dynamics on actin filaments. Flexibility of elongated straight molecules typically is assessed by persistence length, a measure of lengthwise thermal bending fluctuations. However, if a molecule's equilibrium conformation is curved, this formulation yields an "apparent" persistence length ( approximately 100nm for tropomyosin), measuring deviations from idealized straight conformations which then overestimate actual dynamic flexibility.
View Article and Find Full Text PDFComplementarity between the tropomyosin supercoil and the helical contour of actin-filaments is required for the binding interaction of actin and tropomyosin (Li et al., 2010). Clusters of small alanine residues in place of canonical leucines along coiled-coil tropomyosin may be responsible for pre-shaping tropomyosin and promoting conformational complementarity to F-actin.
View Article and Find Full Text PDFWrapped superhelically around actin filaments, the coiled-coil alpha-helices of tropomyosin regulate muscle contraction by cooperatively blocking or exposing myosin-binding sites on actin. In non-muscle cells, tropomyosin additionally controls access of actin-binding proteins involved in cytoskeletal actin filament maintenance and remodeling. Tropomyosin's global shape and flexibility play a key role in the assembly, maintenance, and regulatory switching of thin filaments yet remain insufficiently characterized.
View Article and Find Full Text PDF